NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  sbthlem3 GIF version

Theorem sbthlem3 6206
Description: Lemma for sbth 6207. If A is equinumerous with a subset of B and vice-versa, then A is equinumerous with B. Theorem XI.1.15 of [Rosser] p. 353. (Contributed by SF, 10-Mar-2015.)
Assertion
Ref Expression
sbthlem3 (((AC C B) (BD D A)) → AB)

Proof of Theorem sbthlem3
Dummy variables r s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bren 6031 . . . . . . 7 (ACr r:A1-1-ontoC)
2 bren 6031 . . . . . . 7 (BDs s:B1-1-ontoD)
31, 2anbi12i 678 . . . . . 6 ((AC BD) ↔ (r r:A1-1-ontoC s s:B1-1-ontoD))
4 eeanv 1913 . . . . . 6 (rs(r:A1-1-ontoC s:B1-1-ontoD) ↔ (r r:A1-1-ontoC s s:B1-1-ontoD))
53, 4bitr4i 243 . . . . 5 ((AC BD) ↔ rs(r:A1-1-ontoC s:B1-1-ontoD))
6 simprl 732 . . . . . . . . . . . 12 (((r:A1-1-ontoC s:B1-1-ontoD) (C B D A)) → C B)
7 f1ofo 5294 . . . . . . . . . . . . . 14 (r:A1-1-ontoCr:AontoC)
8 forn 5273 . . . . . . . . . . . . . 14 (r:AontoC → ran r = C)
97, 8syl 15 . . . . . . . . . . . . 13 (r:A1-1-ontoC → ran r = C)
109ad2antrr 706 . . . . . . . . . . . 12 (((r:A1-1-ontoC s:B1-1-ontoD) (C B D A)) → ran r = C)
11 f1odm 5291 . . . . . . . . . . . . 13 (s:B1-1-ontoD → dom s = B)
1211ad2antlr 707 . . . . . . . . . . . 12 (((r:A1-1-ontoC s:B1-1-ontoD) (C B D A)) → dom s = B)
136, 10, 123sstr4d 3315 . . . . . . . . . . 11 (((r:A1-1-ontoC s:B1-1-ontoD) (C B D A)) → ran r dom s)
14 dmcosseq 4974 . . . . . . . . . . 11 (ran r dom s → dom (s r) = dom r)
1513, 14syl 15 . . . . . . . . . 10 (((r:A1-1-ontoC s:B1-1-ontoD) (C B D A)) → dom (s r) = dom r)
16 f1odm 5291 . . . . . . . . . . 11 (r:A1-1-ontoC → dom r = A)
1716ad2antrr 706 . . . . . . . . . 10 (((r:A1-1-ontoC s:B1-1-ontoD) (C B D A)) → dom r = A)
1815, 17eqtrd 2385 . . . . . . . . 9 (((r:A1-1-ontoC s:B1-1-ontoD) (C B D A)) → dom (s r) = A)
19 f1ofun 5290 . . . . . . . . . . . . . 14 (s:B1-1-ontoD → Fun s)
20 f1ofun 5290 . . . . . . . . . . . . . 14 (r:A1-1-ontoC → Fun r)
21 funco 5143 . . . . . . . . . . . . . 14 ((Fun s Fun r) → Fun (s r))
2219, 20, 21syl2anr 464 . . . . . . . . . . . . 13 ((r:A1-1-ontoC s:B1-1-ontoD) → Fun (s r))
23 dff1o2 5292 . . . . . . . . . . . . . . . 16 (r:A1-1-ontoC ↔ (r Fn A Fun r ran r = C))
2423simp2bi 971 . . . . . . . . . . . . . . 15 (r:A1-1-ontoC → Fun r)
25 dff1o2 5292 . . . . . . . . . . . . . . . 16 (s:B1-1-ontoD ↔ (s Fn B Fun s ran s = D))
2625simp2bi 971 . . . . . . . . . . . . . . 15 (s:B1-1-ontoD → Fun s)
27 funco 5143 . . . . . . . . . . . . . . 15 ((Fun r Fun s) → Fun (r s))
2824, 26, 27syl2an 463 . . . . . . . . . . . . . 14 ((r:A1-1-ontoC s:B1-1-ontoD) → Fun (r s))
29 cnvco 4895 . . . . . . . . . . . . . . 15 (s r) = (r s)
3029funeqi 5129 . . . . . . . . . . . . . 14 (Fun (s r) ↔ Fun (r s))
3128, 30sylibr 203 . . . . . . . . . . . . 13 ((r:A1-1-ontoC s:B1-1-ontoD) → Fun (s r))
3222, 31jca 518 . . . . . . . . . . . 12 ((r:A1-1-ontoC s:B1-1-ontoD) → (Fun (s r) Fun (s r)))
3332adantr 451 . . . . . . . . . . 11 (((r:A1-1-ontoC s:B1-1-ontoD) (C B D A)) → (Fun (s r) Fun (s r)))
34 dff1o2 5292 . . . . . . . . . . . 12 ((s r):dom (s r)–1-1-onto→ran (s r) ↔ ((s r) Fn dom (s r) Fun (s r) ran (s r) = ran (s r)))
35 funfn 5137 . . . . . . . . . . . . . 14 (Fun (s r) ↔ (s r) Fn dom (s r))
3635anbi1i 676 . . . . . . . . . . . . 13 ((Fun (s r) Fun (s r)) ↔ ((s r) Fn dom (s r) Fun (s r)))
37 eqid 2353 . . . . . . . . . . . . . 14 ran (s r) = ran (s r)
38 df-3an 936 . . . . . . . . . . . . . 14 (((s r) Fn dom (s r) Fun (s r) ran (s r) = ran (s r)) ↔ (((s r) Fn dom (s r) Fun (s r)) ran (s r) = ran (s r)))
3937, 38mpbiran2 885 . . . . . . . . . . . . 13 (((s r) Fn dom (s r) Fun (s r) ran (s r) = ran (s r)) ↔ ((s r) Fn dom (s r) Fun (s r)))
4036, 39bitr4i 243 . . . . . . . . . . . 12 ((Fun (s r) Fun (s r)) ↔ ((s r) Fn dom (s r) Fun (s r) ran (s r) = ran (s r)))
4134, 40bitr4i 243 . . . . . . . . . . 11 ((s r):dom (s r)–1-1-onto→ran (s r) ↔ (Fun (s r) Fun (s r)))
4233, 41sylibr 203 . . . . . . . . . 10 (((r:A1-1-ontoC s:B1-1-ontoD) (C B D A)) → (s r):dom (s r)–1-1-onto→ran (s r))
43 vex 2863 . . . . . . . . . . . 12 s V
44 vex 2863 . . . . . . . . . . . 12 r V
4543, 44coex 4751 . . . . . . . . . . 11 (s r) V
4645f1oen 6034 . . . . . . . . . 10 ((s r):dom (s r)–1-1-onto→ran (s r) → dom (s r) ≈ ran (s r))
4742, 46syl 15 . . . . . . . . 9 (((r:A1-1-ontoC s:B1-1-ontoD) (C B D A)) → dom (s r) ≈ ran (s r))
4818, 47eqbrtrrd 4662 . . . . . . . 8 (((r:A1-1-ontoC s:B1-1-ontoD) (C B D A)) → A ≈ ran (s r))
49 f1ofo 5294 . . . . . . . . . . . 12 (s:B1-1-ontoDs:BontoD)
50 forn 5273 . . . . . . . . . . . 12 (s:BontoD → ran s = D)
5149, 50syl 15 . . . . . . . . . . 11 (s:B1-1-ontoD → ran s = D)
5243rnex 5108 . . . . . . . . . . 11 ran s V
5351, 52syl6eqelr 2442 . . . . . . . . . 10 (s:B1-1-ontoDD V)
5453ad2antlr 707 . . . . . . . . 9 (((r:A1-1-ontoC s:B1-1-ontoD) (C B D A)) → D V)
55 simprr 733 . . . . . . . . . 10 (((r:A1-1-ontoC s:B1-1-ontoD) (C B D A)) → D A)
5655, 18sseqtr4d 3309 . . . . . . . . 9 (((r:A1-1-ontoC s:B1-1-ontoD) (C B D A)) → D dom (s r))
57 rncoss 4973 . . . . . . . . . 10 ran (s r) ran s
5851ad2antlr 707 . . . . . . . . . 10 (((r:A1-1-ontoC s:B1-1-ontoD) (C B D A)) → ran s = D)
5957, 58syl5sseq 3320 . . . . . . . . 9 (((r:A1-1-ontoC s:B1-1-ontoD) (C B D A)) → ran (s r) D)
6045sbthlem2 6205 . . . . . . . . 9 (((Fun (s r) Fun (s r)) (D V D dom (s r) ran (s r) D)) → ran (s r) ≈ D)
6133, 54, 56, 59, 60syl13anc 1184 . . . . . . . 8 (((r:A1-1-ontoC s:B1-1-ontoD) (C B D A)) → ran (s r) ≈ D)
62 entr 6039 . . . . . . . 8 ((A ≈ ran (s r) ran (s r) ≈ D) → AD)
6348, 61, 62syl2anc 642 . . . . . . 7 (((r:A1-1-ontoC s:B1-1-ontoD) (C B D A)) → AD)
6463ex 423 . . . . . 6 ((r:A1-1-ontoC s:B1-1-ontoD) → ((C B D A) → AD))
6564exlimivv 1635 . . . . 5 (rs(r:A1-1-ontoC s:B1-1-ontoD) → ((C B D A) → AD))
665, 65sylbi 187 . . . 4 ((AC BD) → ((C B D A) → AD))
6766imp 418 . . 3 (((AC BD) (C B D A)) → AD)
6867an4s 799 . 2 (((AC C B) (BD D A)) → AD)
69 ensymi 6037 . . 3 (BDDB)
7069ad2antrl 708 . 2 (((AC C B) (BD D A)) → DB)
71 entr 6039 . 2 ((AD DB) → AB)
7268, 70, 71syl2anc 642 1 (((AC C B) (BD D A)) → AB)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358   w3a 934  wex 1541   = wceq 1642   wcel 1710  Vcvv 2860   wss 3258   class class class wbr 4640   ccom 4722  ccnv 4772  dom cdm 4773  ran crn 4774  Fun wfun 4776   Fn wfn 4777  ontowfo 4780  1-1-ontowf1o 4781  cen 6029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-1st 4724  df-swap 4725  df-sset 4726  df-co 4727  df-ima 4728  df-si 4729  df-id 4768  df-xp 4785  df-cnv 4786  df-rn 4787  df-dm 4788  df-res 4789  df-fun 4790  df-fn 4791  df-f 4792  df-f1 4793  df-fo 4794  df-f1o 4795  df-2nd 4798  df-txp 5737  df-fix 5741  df-ins2 5751  df-ins3 5753  df-image 5755  df-clos1 5874  df-en 6030
This theorem is referenced by:  sbth  6207
  Copyright terms: Public domain W3C validator