NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  sbthlem3 GIF version

Theorem sbthlem3 6205
Description: Lemma for sbth 6206. If A is equinumerous with a subset of B and vice-versa, then A is equinumerous with B. Theorem XI.1.15 of [Rosser] p. 353. (Contributed by SF, 10-Mar-2015.)
Assertion
Ref Expression
sbthlem3 (((AC C B) (BD D A)) → AB)

Proof of Theorem sbthlem3
Dummy variables r s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bren 6030 . . . . . . 7 (ACr r:A1-1-ontoC)
2 bren 6030 . . . . . . 7 (BDs s:B1-1-ontoD)
31, 2anbi12i 678 . . . . . 6 ((AC BD) ↔ (r r:A1-1-ontoC s s:B1-1-ontoD))
4 eeanv 1913 . . . . . 6 (rs(r:A1-1-ontoC s:B1-1-ontoD) ↔ (r r:A1-1-ontoC s s:B1-1-ontoD))
53, 4bitr4i 243 . . . . 5 ((AC BD) ↔ rs(r:A1-1-ontoC s:B1-1-ontoD))
6 simprl 732 . . . . . . . . . . . 12 (((r:A1-1-ontoC s:B1-1-ontoD) (C B D A)) → C B)
7 f1ofo 5293 . . . . . . . . . . . . . 14 (r:A1-1-ontoCr:AontoC)
8 forn 5272 . . . . . . . . . . . . . 14 (r:AontoC → ran r = C)
97, 8syl 15 . . . . . . . . . . . . 13 (r:A1-1-ontoC → ran r = C)
109ad2antrr 706 . . . . . . . . . . . 12 (((r:A1-1-ontoC s:B1-1-ontoD) (C B D A)) → ran r = C)
11 f1odm 5290 . . . . . . . . . . . . 13 (s:B1-1-ontoD → dom s = B)
1211ad2antlr 707 . . . . . . . . . . . 12 (((r:A1-1-ontoC s:B1-1-ontoD) (C B D A)) → dom s = B)
136, 10, 123sstr4d 3314 . . . . . . . . . . 11 (((r:A1-1-ontoC s:B1-1-ontoD) (C B D A)) → ran r dom s)
14 dmcosseq 4973 . . . . . . . . . . 11 (ran r dom s → dom (s r) = dom r)
1513, 14syl 15 . . . . . . . . . 10 (((r:A1-1-ontoC s:B1-1-ontoD) (C B D A)) → dom (s r) = dom r)
16 f1odm 5290 . . . . . . . . . . 11 (r:A1-1-ontoC → dom r = A)
1716ad2antrr 706 . . . . . . . . . 10 (((r:A1-1-ontoC s:B1-1-ontoD) (C B D A)) → dom r = A)
1815, 17eqtrd 2385 . . . . . . . . 9 (((r:A1-1-ontoC s:B1-1-ontoD) (C B D A)) → dom (s r) = A)
19 f1ofun 5289 . . . . . . . . . . . . . 14 (s:B1-1-ontoD → Fun s)
20 f1ofun 5289 . . . . . . . . . . . . . 14 (r:A1-1-ontoC → Fun r)
21 funco 5142 . . . . . . . . . . . . . 14 ((Fun s Fun r) → Fun (s r))
2219, 20, 21syl2anr 464 . . . . . . . . . . . . 13 ((r:A1-1-ontoC s:B1-1-ontoD) → Fun (s r))
23 dff1o2 5291 . . . . . . . . . . . . . . . 16 (r:A1-1-ontoC ↔ (r Fn A Fun r ran r = C))
2423simp2bi 971 . . . . . . . . . . . . . . 15 (r:A1-1-ontoC → Fun r)
25 dff1o2 5291 . . . . . . . . . . . . . . . 16 (s:B1-1-ontoD ↔ (s Fn B Fun s ran s = D))
2625simp2bi 971 . . . . . . . . . . . . . . 15 (s:B1-1-ontoD → Fun s)
27 funco 5142 . . . . . . . . . . . . . . 15 ((Fun r Fun s) → Fun (r s))
2824, 26, 27syl2an 463 . . . . . . . . . . . . . 14 ((r:A1-1-ontoC s:B1-1-ontoD) → Fun (r s))
29 cnvco 4894 . . . . . . . . . . . . . . 15 (s r) = (r s)
3029funeqi 5128 . . . . . . . . . . . . . 14 (Fun (s r) ↔ Fun (r s))
3128, 30sylibr 203 . . . . . . . . . . . . 13 ((r:A1-1-ontoC s:B1-1-ontoD) → Fun (s r))
3222, 31jca 518 . . . . . . . . . . . 12 ((r:A1-1-ontoC s:B1-1-ontoD) → (Fun (s r) Fun (s r)))
3332adantr 451 . . . . . . . . . . 11 (((r:A1-1-ontoC s:B1-1-ontoD) (C B D A)) → (Fun (s r) Fun (s r)))
34 dff1o2 5291 . . . . . . . . . . . 12 ((s r):dom (s r)–1-1-onto→ran (s r) ↔ ((s r) Fn dom (s r) Fun (s r) ran (s r) = ran (s r)))
35 funfn 5136 . . . . . . . . . . . . . 14 (Fun (s r) ↔ (s r) Fn dom (s r))
3635anbi1i 676 . . . . . . . . . . . . 13 ((Fun (s r) Fun (s r)) ↔ ((s r) Fn dom (s r) Fun (s r)))
37 eqid 2353 . . . . . . . . . . . . . 14 ran (s r) = ran (s r)
38 df-3an 936 . . . . . . . . . . . . . 14 (((s r) Fn dom (s r) Fun (s r) ran (s r) = ran (s r)) ↔ (((s r) Fn dom (s r) Fun (s r)) ran (s r) = ran (s r)))
3937, 38mpbiran2 885 . . . . . . . . . . . . 13 (((s r) Fn dom (s r) Fun (s r) ran (s r) = ran (s r)) ↔ ((s r) Fn dom (s r) Fun (s r)))
4036, 39bitr4i 243 . . . . . . . . . . . 12 ((Fun (s r) Fun (s r)) ↔ ((s r) Fn dom (s r) Fun (s r) ran (s r) = ran (s r)))
4134, 40bitr4i 243 . . . . . . . . . . 11 ((s r):dom (s r)–1-1-onto→ran (s r) ↔ (Fun (s r) Fun (s r)))
4233, 41sylibr 203 . . . . . . . . . 10 (((r:A1-1-ontoC s:B1-1-ontoD) (C B D A)) → (s r):dom (s r)–1-1-onto→ran (s r))
43 vex 2862 . . . . . . . . . . . 12 s V
44 vex 2862 . . . . . . . . . . . 12 r V
4543, 44coex 4750 . . . . . . . . . . 11 (s r) V
4645f1oen 6033 . . . . . . . . . 10 ((s r):dom (s r)–1-1-onto→ran (s r) → dom (s r) ≈ ran (s r))
4742, 46syl 15 . . . . . . . . 9 (((r:A1-1-ontoC s:B1-1-ontoD) (C B D A)) → dom (s r) ≈ ran (s r))
4818, 47eqbrtrrd 4661 . . . . . . . 8 (((r:A1-1-ontoC s:B1-1-ontoD) (C B D A)) → A ≈ ran (s r))
49 f1ofo 5293 . . . . . . . . . . . 12 (s:B1-1-ontoDs:BontoD)
50 forn 5272 . . . . . . . . . . . 12 (s:BontoD → ran s = D)
5149, 50syl 15 . . . . . . . . . . 11 (s:B1-1-ontoD → ran s = D)
5243rnex 5107 . . . . . . . . . . 11 ran s V
5351, 52syl6eqelr 2442 . . . . . . . . . 10 (s:B1-1-ontoDD V)
5453ad2antlr 707 . . . . . . . . 9 (((r:A1-1-ontoC s:B1-1-ontoD) (C B D A)) → D V)
55 simprr 733 . . . . . . . . . 10 (((r:A1-1-ontoC s:B1-1-ontoD) (C B D A)) → D A)
5655, 18sseqtr4d 3308 . . . . . . . . 9 (((r:A1-1-ontoC s:B1-1-ontoD) (C B D A)) → D dom (s r))
57 rncoss 4972 . . . . . . . . . 10 ran (s r) ran s
5851ad2antlr 707 . . . . . . . . . 10 (((r:A1-1-ontoC s:B1-1-ontoD) (C B D A)) → ran s = D)
5957, 58syl5sseq 3319 . . . . . . . . 9 (((r:A1-1-ontoC s:B1-1-ontoD) (C B D A)) → ran (s r) D)
6045sbthlem2 6204 . . . . . . . . 9 (((Fun (s r) Fun (s r)) (D V D dom (s r) ran (s r) D)) → ran (s r) ≈ D)
6133, 54, 56, 59, 60syl13anc 1184 . . . . . . . 8 (((r:A1-1-ontoC s:B1-1-ontoD) (C B D A)) → ran (s r) ≈ D)
62 entr 6038 . . . . . . . 8 ((A ≈ ran (s r) ran (s r) ≈ D) → AD)
6348, 61, 62syl2anc 642 . . . . . . 7 (((r:A1-1-ontoC s:B1-1-ontoD) (C B D A)) → AD)
6463ex 423 . . . . . 6 ((r:A1-1-ontoC s:B1-1-ontoD) → ((C B D A) → AD))
6564exlimivv 1635 . . . . 5 (rs(r:A1-1-ontoC s:B1-1-ontoD) → ((C B D A) → AD))
665, 65sylbi 187 . . . 4 ((AC BD) → ((C B D A) → AD))
6766imp 418 . . 3 (((AC BD) (C B D A)) → AD)
6867an4s 799 . 2 (((AC C B) (BD D A)) → AD)
69 ensymi 6036 . . 3 (BDDB)
7069ad2antrl 708 . 2 (((AC C B) (BD D A)) → DB)
71 entr 6038 . 2 ((AD DB) → AB)
7268, 70, 71syl2anc 642 1 (((AC C B) (BD D A)) → AB)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358   w3a 934  wex 1541   = wceq 1642   wcel 1710  Vcvv 2859   wss 3257   class class class wbr 4639   ccom 4721  ccnv 4771  dom cdm 4772  ran crn 4773  Fun wfun 4775   Fn wfn 4776  ontowfo 4779  1-1-ontowf1o 4780  cen 6028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4078  ax-xp 4079  ax-cnv 4080  ax-1c 4081  ax-sset 4082  ax-si 4083  ax-ins2 4084  ax-ins3 4085  ax-typlower 4086  ax-sn 4087
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-ne 2518  df-ral 2619  df-rex 2620  df-reu 2621  df-rmo 2622  df-rab 2623  df-v 2861  df-sbc 3047  df-nin 3211  df-compl 3212  df-in 3213  df-un 3214  df-dif 3215  df-symdif 3216  df-ss 3259  df-pss 3261  df-nul 3551  df-if 3663  df-pw 3724  df-sn 3741  df-pr 3742  df-uni 3892  df-int 3927  df-opk 4058  df-1c 4136  df-pw1 4137  df-uni1 4138  df-xpk 4185  df-cnvk 4186  df-ins2k 4187  df-ins3k 4188  df-imak 4189  df-cok 4190  df-p6 4191  df-sik 4192  df-ssetk 4193  df-imagek 4194  df-idk 4195  df-iota 4339  df-0c 4377  df-addc 4378  df-nnc 4379  df-fin 4380  df-lefin 4440  df-ltfin 4441  df-ncfin 4442  df-tfin 4443  df-evenfin 4444  df-oddfin 4445  df-sfin 4446  df-spfin 4447  df-phi 4565  df-op 4566  df-proj1 4567  df-proj2 4568  df-opab 4623  df-br 4640  df-1st 4723  df-swap 4724  df-sset 4725  df-co 4726  df-ima 4727  df-si 4728  df-id 4767  df-xp 4784  df-cnv 4785  df-rn 4786  df-dm 4787  df-res 4788  df-fun 4789  df-fn 4790  df-f 4791  df-f1 4792  df-fo 4793  df-f1o 4794  df-2nd 4797  df-txp 5736  df-fix 5740  df-ins2 5750  df-ins3 5752  df-image 5754  df-clos1 5873  df-en 6029
This theorem is referenced by:  sbth  6206
  Copyright terms: Public domain W3C validator