New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > syl2anb | GIF version |
Description: A double syllogism inference. (Contributed by NM, 29-Jul-1999.) |
Ref | Expression |
---|---|
syl2anb.1 | ⊢ (φ ↔ ψ) |
syl2anb.2 | ⊢ (τ ↔ χ) |
syl2anb.3 | ⊢ ((ψ ∧ χ) → θ) |
Ref | Expression |
---|---|
syl2anb | ⊢ ((φ ∧ τ) → θ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2anb.2 | . 2 ⊢ (τ ↔ χ) | |
2 | syl2anb.1 | . . 3 ⊢ (φ ↔ ψ) | |
3 | syl2anb.3 | . . 3 ⊢ ((ψ ∧ χ) → θ) | |
4 | 2, 3 | sylanb 458 | . 2 ⊢ ((φ ∧ χ) → θ) |
5 | 1, 4 | sylan2b 461 | 1 ⊢ ((φ ∧ τ) → θ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: sylancb 646 2eu6 2289 reupick3 3540 difprsnss 3846 ncfinraise 4481 ncfinlower 4483 sfinltfin 4535 fnun 5189 f1oun 5304 eqfunfv 5397 swapf1o 5511 fnfullfunlem2 5857 fvfullfunlem3 5863 xpassen 6057 enprmaplem3 6078 ncaddccl 6144 peano4nc 6150 cenc 6181 |
Copyright terms: Public domain | W3C validator |