New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > syl2anb | GIF version |
Description: A double syllogism inference. (Contributed by NM, 29-Jul-1999.) |
Ref | Expression |
---|---|
syl2anb.1 | ⊢ (φ ↔ ψ) |
syl2anb.2 | ⊢ (τ ↔ χ) |
syl2anb.3 | ⊢ ((ψ ∧ χ) → θ) |
Ref | Expression |
---|---|
syl2anb | ⊢ ((φ ∧ τ) → θ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2anb.2 | . 2 ⊢ (τ ↔ χ) | |
2 | syl2anb.1 | . . 3 ⊢ (φ ↔ ψ) | |
3 | syl2anb.3 | . . 3 ⊢ ((ψ ∧ χ) → θ) | |
4 | 2, 3 | sylanb 458 | . 2 ⊢ ((φ ∧ χ) → θ) |
5 | 1, 4 | sylan2b 461 | 1 ⊢ ((φ ∧ τ) → θ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: sylancb 646 2eu6 2289 reupick3 3541 difprsnss 3847 ncfinraise 4482 ncfinlower 4484 sfinltfin 4536 fnun 5190 f1oun 5305 eqfunfv 5398 swapf1o 5512 fnfullfunlem2 5858 fvfullfunlem3 5864 xpassen 6058 enprmaplem3 6079 ncaddccl 6145 peano4nc 6151 cenc 6182 |
Copyright terms: Public domain | W3C validator |