Step | Hyp | Ref
| Expression |
1 | | ov3.1 |
. . 3
⊢ S ∈
V |
2 | 1 | isseti 2866 |
. 2
⊢ ∃z z = S |
3 | | nfv 1619 |
. . 3
⊢ Ⅎz((A ∈ H ∧ B ∈ H) ∧ (C ∈ H ∧ D ∈ H)) |
4 | | nfcv 2490 |
. . . . 5
⊢
Ⅎz⟨A, B⟩ |
5 | | ov3.3 |
. . . . . 6
⊢ F = {⟨⟨x, y⟩, z⟩ ∣ ((x ∈ (H ×
H) ∧
y ∈
(H × H)) ∧ ∃w∃v∃u∃f((x = ⟨w, v⟩ ∧ y = ⟨u, f⟩) ∧ z = R))} |
6 | | nfoprab3 5549 |
. . . . . 6
⊢
Ⅎz{⟨⟨x, y⟩, z⟩ ∣ ((x ∈ (H × H)
∧ y ∈ (H ×
H)) ∧
∃w∃v∃u∃f((x = ⟨w, v⟩ ∧ y = ⟨u, f⟩) ∧ z = R))} |
7 | 5, 6 | nfcxfr 2487 |
. . . . 5
⊢
ℲzF |
8 | | nfcv 2490 |
. . . . 5
⊢
Ⅎz⟨C, D⟩ |
9 | 4, 7, 8 | nfov 5546 |
. . . 4
⊢
Ⅎz(⟨A, B⟩F⟨C, D⟩) |
10 | 9 | nfeq1 2499 |
. . 3
⊢ Ⅎz(⟨A, B⟩F⟨C, D⟩) = S |
11 | | ov3.2 |
. . . . . . 7
⊢ (((w = A ∧ v = B) ∧ (u = C ∧ f = D)) → R =
S) |
12 | 11 | eqeq2d 2364 |
. . . . . 6
⊢ (((w = A ∧ v = B) ∧ (u = C ∧ f = D)) → (z =
R ↔ z = S)) |
13 | 12 | copsex4g 4611 |
. . . . 5
⊢ (((A ∈ H ∧ B ∈ H) ∧ (C ∈ H ∧ D ∈ H)) → (∃w∃v∃u∃f((⟨A, B⟩ = ⟨w, v⟩ ∧ ⟨C, D⟩ = ⟨u, f⟩) ∧ z = R) ↔
z = S)) |
14 | | opelxp 4812 |
. . . . . 6
⊢ (⟨A, B⟩ ∈ (H ×
H) ↔ (A ∈ H ∧ B ∈ H)) |
15 | | opelxp 4812 |
. . . . . 6
⊢ (⟨C, D⟩ ∈ (H ×
H) ↔ (C ∈ H ∧ D ∈ H)) |
16 | | nfcv 2490 |
. . . . . . 7
⊢
Ⅎx⟨A, B⟩ |
17 | | nfcv 2490 |
. . . . . . 7
⊢
Ⅎy⟨A, B⟩ |
18 | | nfcv 2490 |
. . . . . . 7
⊢
Ⅎy⟨C, D⟩ |
19 | | nfv 1619 |
. . . . . . . 8
⊢ Ⅎx∃w∃v∃u∃f((⟨A, B⟩ = ⟨w, v⟩ ∧ y = ⟨u, f⟩) ∧ z = R) |
20 | | nfoprab1 5547 |
. . . . . . . . . . 11
⊢
Ⅎx{⟨⟨x, y⟩, z⟩ ∣ ((x ∈ (H × H)
∧ y ∈ (H ×
H)) ∧
∃w∃v∃u∃f((x = ⟨w, v⟩ ∧ y = ⟨u, f⟩) ∧ z = R))} |
21 | 5, 20 | nfcxfr 2487 |
. . . . . . . . . 10
⊢
ℲxF |
22 | | nfcv 2490 |
. . . . . . . . . 10
⊢
Ⅎxy |
23 | 16, 21, 22 | nfov 5546 |
. . . . . . . . 9
⊢
Ⅎx(⟨A, B⟩Fy) |
24 | 23 | nfeq1 2499 |
. . . . . . . 8
⊢ Ⅎx(⟨A, B⟩Fy) = z |
25 | 19, 24 | nfim 1813 |
. . . . . . 7
⊢ Ⅎx(∃w∃v∃u∃f((⟨A, B⟩ = ⟨w, v⟩ ∧ y = ⟨u, f⟩) ∧ z = R) →
(⟨A,
B⟩Fy) = z) |
26 | | nfv 1619 |
. . . . . . . 8
⊢ Ⅎy∃w∃v∃u∃f((⟨A, B⟩ = ⟨w, v⟩ ∧ ⟨C, D⟩ = ⟨u, f⟩) ∧ z = R) |
27 | | nfoprab2 5548 |
. . . . . . . . . . 11
⊢
Ⅎy{⟨⟨x, y⟩, z⟩ ∣ ((x ∈ (H × H)
∧ y ∈ (H ×
H)) ∧
∃w∃v∃u∃f((x = ⟨w, v⟩ ∧ y = ⟨u, f⟩) ∧ z = R))} |
28 | 5, 27 | nfcxfr 2487 |
. . . . . . . . . 10
⊢
ℲyF |
29 | 17, 28, 18 | nfov 5546 |
. . . . . . . . 9
⊢
Ⅎy(⟨A, B⟩F⟨C, D⟩) |
30 | 29 | nfeq1 2499 |
. . . . . . . 8
⊢ Ⅎy(⟨A, B⟩F⟨C, D⟩) = z |
31 | 26, 30 | nfim 1813 |
. . . . . . 7
⊢ Ⅎy(∃w∃v∃u∃f((⟨A, B⟩ = ⟨w, v⟩ ∧ ⟨C, D⟩ = ⟨u, f⟩) ∧ z = R) → (⟨A, B⟩F⟨C, D⟩) = z) |
32 | | eqeq1 2359 |
. . . . . . . . . . 11
⊢ (x = ⟨A, B⟩ → (x =
⟨w,
v⟩ ↔
⟨A,
B⟩ =
⟨w,
v⟩)) |
33 | 32 | anbi1d 685 |
. . . . . . . . . 10
⊢ (x = ⟨A, B⟩ → ((x =
⟨w,
v⟩ ∧ y = ⟨u, f⟩) ↔ (⟨A, B⟩ = ⟨w, v⟩ ∧ y = ⟨u, f⟩))) |
34 | 33 | anbi1d 685 |
. . . . . . . . 9
⊢ (x = ⟨A, B⟩ → (((x =
⟨w,
v⟩ ∧ y = ⟨u, f⟩) ∧ z = R) ↔ ((⟨A, B⟩ = ⟨w, v⟩ ∧ y = ⟨u, f⟩) ∧ z = R))) |
35 | 34 | 4exbidv 1630 |
. . . . . . . 8
⊢ (x = ⟨A, B⟩ → (∃w∃v∃u∃f((x = ⟨w, v⟩ ∧ y = ⟨u, f⟩) ∧ z = R) ↔
∃w∃v∃u∃f((⟨A, B⟩ = ⟨w, v⟩ ∧ y = ⟨u, f⟩) ∧ z = R))) |
36 | | oveq1 5531 |
. . . . . . . . 9
⊢ (x = ⟨A, B⟩ → (xFy) = (⟨A, B⟩Fy)) |
37 | 36 | eqeq1d 2361 |
. . . . . . . 8
⊢ (x = ⟨A, B⟩ → ((xFy) = z ↔
(⟨A,
B⟩Fy) = z)) |
38 | 35, 37 | imbi12d 311 |
. . . . . . 7
⊢ (x = ⟨A, B⟩ → ((∃w∃v∃u∃f((x = ⟨w, v⟩ ∧ y = ⟨u, f⟩) ∧ z = R) →
(xFy) = z) ↔ (∃w∃v∃u∃f((⟨A, B⟩ = ⟨w, v⟩ ∧ y = ⟨u, f⟩) ∧ z = R) → (⟨A, B⟩Fy) = z))) |
39 | | eqeq1 2359 |
. . . . . . . . . . 11
⊢ (y = ⟨C, D⟩ → (y =
⟨u,
f⟩ ↔
⟨C,
D⟩ =
⟨u,
f⟩)) |
40 | 39 | anbi2d 684 |
. . . . . . . . . 10
⊢ (y = ⟨C, D⟩ → ((⟨A, B⟩ = ⟨w, v⟩ ∧ y = ⟨u, f⟩) ↔ (⟨A, B⟩ = ⟨w, v⟩ ∧ ⟨C, D⟩ = ⟨u, f⟩))) |
41 | 40 | anbi1d 685 |
. . . . . . . . 9
⊢ (y = ⟨C, D⟩ → (((⟨A, B⟩ = ⟨w, v⟩ ∧ y = ⟨u, f⟩) ∧ z = R) ↔ ((⟨A, B⟩ = ⟨w, v⟩ ∧ ⟨C, D⟩ = ⟨u, f⟩) ∧ z = R))) |
42 | 41 | 4exbidv 1630 |
. . . . . . . 8
⊢ (y = ⟨C, D⟩ → (∃w∃v∃u∃f((⟨A, B⟩ = ⟨w, v⟩ ∧ y = ⟨u, f⟩) ∧ z = R) ↔ ∃w∃v∃u∃f((⟨A, B⟩ = ⟨w, v⟩ ∧ ⟨C, D⟩ = ⟨u, f⟩) ∧ z = R))) |
43 | | oveq2 5532 |
. . . . . . . . 9
⊢ (y = ⟨C, D⟩ → (⟨A, B⟩Fy) = (⟨A, B⟩F⟨C, D⟩)) |
44 | 43 | eqeq1d 2361 |
. . . . . . . 8
⊢ (y = ⟨C, D⟩ → ((⟨A, B⟩Fy) = z ↔ (⟨A, B⟩F⟨C, D⟩) = z)) |
45 | 42, 44 | imbi12d 311 |
. . . . . . 7
⊢ (y = ⟨C, D⟩ → ((∃w∃v∃u∃f((⟨A, B⟩ = ⟨w, v⟩ ∧ y = ⟨u, f⟩) ∧ z = R) → (⟨A, B⟩Fy) = z) ↔ (∃w∃v∃u∃f((⟨A, B⟩ = ⟨w, v⟩ ∧ ⟨C, D⟩ = ⟨u, f⟩) ∧ z = R) →
(⟨A,
B⟩F⟨C, D⟩) = z))) |
46 | | moeq 3013 |
. . . . . . . . . . . 12
⊢ ∃*z z = R |
47 | 46 | mosubop 4614 |
. . . . . . . . . . 11
⊢ ∃*z∃u∃f(y = ⟨u, f⟩ ∧ z = R) |
48 | 47 | mosubop 4614 |
. . . . . . . . . 10
⊢ ∃*z∃w∃v(x = ⟨w, v⟩ ∧ ∃u∃f(y = ⟨u, f⟩ ∧ z = R)) |
49 | | anass 630 |
. . . . . . . . . . . . . 14
⊢ (((x = ⟨w, v⟩ ∧ y = ⟨u, f⟩) ∧ z = R) ↔
(x = ⟨w, v⟩ ∧ (y = ⟨u, f⟩ ∧ z = R))) |
50 | 49 | 2exbii 1583 |
. . . . . . . . . . . . 13
⊢ (∃u∃f((x = ⟨w, v⟩ ∧ y = ⟨u, f⟩) ∧ z = R) ↔
∃u∃f(x = ⟨w, v⟩ ∧ (y = ⟨u, f⟩ ∧ z = R))) |
51 | | 19.42vv 1907 |
. . . . . . . . . . . . 13
⊢ (∃u∃f(x = ⟨w, v⟩ ∧ (y = ⟨u, f⟩ ∧ z = R)) ↔
(x = ⟨w, v⟩ ∧ ∃u∃f(y = ⟨u, f⟩ ∧ z = R))) |
52 | 50, 51 | bitri 240 |
. . . . . . . . . . . 12
⊢ (∃u∃f((x = ⟨w, v⟩ ∧ y = ⟨u, f⟩) ∧ z = R) ↔
(x = ⟨w, v⟩ ∧ ∃u∃f(y = ⟨u, f⟩ ∧ z = R))) |
53 | 52 | 2exbii 1583 |
. . . . . . . . . . 11
⊢ (∃w∃v∃u∃f((x = ⟨w, v⟩ ∧ y = ⟨u, f⟩) ∧ z = R) ↔
∃w∃v(x = ⟨w, v⟩ ∧ ∃u∃f(y = ⟨u, f⟩ ∧ z = R))) |
54 | 53 | mobii 2240 |
. . . . . . . . . 10
⊢ (∃*z∃w∃v∃u∃f((x = ⟨w, v⟩ ∧ y = ⟨u, f⟩) ∧ z = R) ↔
∃*z∃w∃v(x = ⟨w, v⟩ ∧ ∃u∃f(y = ⟨u, f⟩ ∧ z = R))) |
55 | 48, 54 | mpbir 200 |
. . . . . . . . 9
⊢ ∃*z∃w∃v∃u∃f((x = ⟨w, v⟩ ∧ y = ⟨u, f⟩) ∧ z = R) |
56 | 55 | a1i 10 |
. . . . . . . 8
⊢ ((x ∈ (H × H)
∧ y ∈ (H ×
H)) → ∃*z∃w∃v∃u∃f((x = ⟨w, v⟩ ∧ y = ⟨u, f⟩) ∧ z = R)) |
57 | 56, 5 | ovidi 5595 |
. . . . . . 7
⊢ ((x ∈ (H × H)
∧ y ∈ (H ×
H)) → (∃w∃v∃u∃f((x = ⟨w, v⟩ ∧ y = ⟨u, f⟩) ∧ z = R) →
(xFy) = z)) |
58 | 16, 17, 18, 25, 31, 38, 45, 57 | vtocl2gaf 2922 |
. . . . . 6
⊢ ((⟨A, B⟩ ∈ (H ×
H) ∧ ⟨C, D⟩ ∈ (H ×
H)) → (∃w∃v∃u∃f((⟨A, B⟩ = ⟨w, v⟩ ∧ ⟨C, D⟩ = ⟨u, f⟩) ∧ z = R) →
(⟨A,
B⟩F⟨C, D⟩) = z)) |
59 | 14, 15, 58 | syl2anbr 466 |
. . . . 5
⊢ (((A ∈ H ∧ B ∈ H) ∧ (C ∈ H ∧ D ∈ H)) → (∃w∃v∃u∃f((⟨A, B⟩ = ⟨w, v⟩ ∧ ⟨C, D⟩ = ⟨u, f⟩) ∧ z = R) →
(⟨A,
B⟩F⟨C, D⟩) = z)) |
60 | 13, 59 | sylbird 226 |
. . . 4
⊢ (((A ∈ H ∧ B ∈ H) ∧ (C ∈ H ∧ D ∈ H)) → (z =
S → (⟨A, B⟩F⟨C, D⟩) = z)) |
61 | | eqeq2 2362 |
. . . 4
⊢ (z = S →
((⟨A,
B⟩F⟨C, D⟩) = z ↔ (⟨A, B⟩F⟨C, D⟩) = S)) |
62 | 60, 61 | mpbidi 207 |
. . 3
⊢ (((A ∈ H ∧ B ∈ H) ∧ (C ∈ H ∧ D ∈ H)) → (z =
S → (⟨A, B⟩F⟨C, D⟩) = S)) |
63 | 3, 10, 62 | exlimd 1806 |
. 2
⊢ (((A ∈ H ∧ B ∈ H) ∧ (C ∈ H ∧ D ∈ H)) → (∃z z = S →
(⟨A,
B⟩F⟨C, D⟩) = S)) |
64 | 2, 63 | mpi 16 |
1
⊢ (((A ∈ H ∧ B ∈ H) ∧ (C ∈ H ∧ D ∈ H)) → (⟨A, B⟩F⟨C, D⟩) = S) |