NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  sylan2br GIF version

Theorem sylan2br 462
Description: A syllogism inference. (Contributed by NM, 21-Apr-1994.)
Hypotheses
Ref Expression
sylan2br.1 (χφ)
sylan2br.2 ((ψ χ) → θ)
Assertion
Ref Expression
sylan2br ((ψ φ) → θ)

Proof of Theorem sylan2br
StepHypRef Expression
1 sylan2br.1 . . 3 (χφ)
21biimpri 197 . 2 (φχ)
3 sylan2br.2 . 2 ((ψ χ) → θ)
42, 3sylan2 460 1 ((ψ φ) → θ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  syl2anbr  466  imainss  5043  xpexr2  5111  funeu2  5133  imadif  5172  fnop  5187  fcnvres  5244  fnopovb  5558  fovrn  5605  fnovrn  5608  nchoicelem17  6306
  Copyright terms: Public domain W3C validator