| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > syl3an1b | GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
| Ref | Expression |
|---|---|
| syl3an1b.1 | ⊢ (φ ↔ ψ) |
| syl3an1b.2 | ⊢ ((ψ ∧ χ ∧ θ) → τ) |
| Ref | Expression |
|---|---|
| syl3an1b | ⊢ ((φ ∧ χ ∧ θ) → τ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3an1b.1 | . . 3 ⊢ (φ ↔ ψ) | |
| 2 | 1 | biimpi 186 | . 2 ⊢ (φ → ψ) |
| 3 | syl3an1b.2 | . 2 ⊢ ((ψ ∧ χ ∧ θ) → τ) | |
| 4 | 2, 3 | syl3an1 1215 | 1 ⊢ ((φ ∧ χ ∧ θ) → τ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∧ w3a 934 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |