| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > syl3anb | GIF version | ||
| Description: A triple syllogism inference. (Contributed by NM, 15-Oct-2005.) |
| Ref | Expression |
|---|---|
| syl3anb.1 | ⊢ (φ ↔ ψ) |
| syl3anb.2 | ⊢ (χ ↔ θ) |
| syl3anb.3 | ⊢ (τ ↔ η) |
| syl3anb.4 | ⊢ ((ψ ∧ θ ∧ η) → ζ) |
| Ref | Expression |
|---|---|
| syl3anb | ⊢ ((φ ∧ χ ∧ τ) → ζ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3anb.1 | . . 3 ⊢ (φ ↔ ψ) | |
| 2 | syl3anb.2 | . . 3 ⊢ (χ ↔ θ) | |
| 3 | syl3anb.3 | . . 3 ⊢ (τ ↔ η) | |
| 4 | 1, 2, 3 | 3anbi123i 1140 | . 2 ⊢ ((φ ∧ χ ∧ τ) ↔ (ψ ∧ θ ∧ η)) |
| 5 | syl3anb.4 | . 2 ⊢ ((ψ ∧ θ ∧ η) → ζ) | |
| 6 | 4, 5 | sylbi 187 | 1 ⊢ ((φ ∧ χ ∧ τ) → ζ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∧ w3a 934 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
| This theorem is referenced by: syl3anbr 1226 |
| Copyright terms: Public domain | W3C validator |