NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  syl3anb GIF version

Theorem syl3anb 1225
Description: A triple syllogism inference. (Contributed by NM, 15-Oct-2005.)
Hypotheses
Ref Expression
syl3anb.1 (φψ)
syl3anb.2 (χθ)
syl3anb.3 (τη)
syl3anb.4 ((ψ θ η) → ζ)
Assertion
Ref Expression
syl3anb ((φ χ τ) → ζ)

Proof of Theorem syl3anb
StepHypRef Expression
1 syl3anb.1 . . 3 (φψ)
2 syl3anb.2 . . 3 (χθ)
3 syl3anb.3 . . 3 (τη)
41, 2, 33anbi123i 1140 . 2 ((φ χ τ) ↔ (ψ θ η))
5 syl3anb.4 . 2 ((ψ θ η) → ζ)
64, 5sylbi 187 1 ((φ χ τ) → ζ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   w3a 934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
This theorem is referenced by:  syl3anbr  1226
  Copyright terms: Public domain W3C validator