New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > syl3anbr | GIF version |
Description: A triple syllogism inference. (Contributed by NM, 29-Dec-2011.) |
Ref | Expression |
---|---|
syl3anbr.1 | ⊢ (ψ ↔ φ) |
syl3anbr.2 | ⊢ (θ ↔ χ) |
syl3anbr.3 | ⊢ (η ↔ τ) |
syl3anbr.4 | ⊢ ((ψ ∧ θ ∧ η) → ζ) |
Ref | Expression |
---|---|
syl3anbr | ⊢ ((φ ∧ χ ∧ τ) → ζ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3anbr.1 | . . 3 ⊢ (ψ ↔ φ) | |
2 | 1 | bicomi 193 | . 2 ⊢ (φ ↔ ψ) |
3 | syl3anbr.2 | . . 3 ⊢ (θ ↔ χ) | |
4 | 3 | bicomi 193 | . 2 ⊢ (χ ↔ θ) |
5 | syl3anbr.3 | . . 3 ⊢ (η ↔ τ) | |
6 | 5 | bicomi 193 | . 2 ⊢ (τ ↔ η) |
7 | syl3anbr.4 | . 2 ⊢ ((ψ ∧ θ ∧ η) → ζ) | |
8 | 2, 4, 6, 7 | syl3anb 1225 | 1 ⊢ ((φ ∧ χ ∧ τ) → ζ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ w3a 934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |