NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  syl3anbr GIF version

Theorem syl3anbr 1226
Description: A triple syllogism inference. (Contributed by NM, 29-Dec-2011.)
Hypotheses
Ref Expression
syl3anbr.1 (ψφ)
syl3anbr.2 (θχ)
syl3anbr.3 (ητ)
syl3anbr.4 ((ψ θ η) → ζ)
Assertion
Ref Expression
syl3anbr ((φ χ τ) → ζ)

Proof of Theorem syl3anbr
StepHypRef Expression
1 syl3anbr.1 . . 3 (ψφ)
21bicomi 193 . 2 (φψ)
3 syl3anbr.2 . . 3 (θχ)
43bicomi 193 . 2 (χθ)
5 syl3anbr.3 . . 3 (ητ)
65bicomi 193 . 2 (τη)
7 syl3anbr.4 . 2 ((ψ θ η) → ζ)
82, 4, 6, 7syl3anb 1225 1 ((φ χ τ) → ζ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   w3a 934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator