NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  syl5eqner GIF version

Theorem syl5eqner 2542
Description: B chained equality inference for inequality. (Contributed by NM, 6-Jun-2012.)
Hypotheses
Ref Expression
syl5eqner.1 B = A
syl5eqner.2 (φBC)
Assertion
Ref Expression
syl5eqner (φAC)

Proof of Theorem syl5eqner
StepHypRef Expression
1 syl5eqner.2 . 2 (φBC)
2 syl5eqner.1 . . 3 B = A
32neeq1i 2527 . 2 (BCAC)
41, 3sylib 188 1 (φAC)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1642  wne 2517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-ex 1542  df-cleq 2346  df-ne 2519
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator