NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  neeq1i GIF version

Theorem neeq1i 2527
Description: Inference for inequality. (Contributed by NM, 29-Apr-2005.)
Hypothesis
Ref Expression
neeq1i.1 A = B
Assertion
Ref Expression
neeq1i (ACBC)

Proof of Theorem neeq1i
StepHypRef Expression
1 neeq1i.1 . 2 A = B
2 neeq1 2525 . 2 (A = B → (ACBC))
31, 2ax-mp 5 1 (ACBC)
Colors of variables: wff setvar class
Syntax hints:  wb 176   = wceq 1642  wne 2517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-ex 1542  df-cleq 2346  df-ne 2519
This theorem is referenced by:  neeq12i  2529  eqnetri  2534  syl5eqner  2542  rabn0  3571  ltfinirr  4458  evenodddisj  4517
  Copyright terms: Public domain W3C validator