NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  syl5sseqr GIF version

Theorem syl5sseqr 3320
Description: Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypotheses
Ref Expression
syl5sseqr.1 B A
syl5sseqr.2 (φC = A)
Assertion
Ref Expression
syl5sseqr (φB C)

Proof of Theorem syl5sseqr
StepHypRef Expression
1 syl5sseqr.1 . . 3 B A
21a1i 10 . 2 (φB A)
3 syl5sseqr.2 . 2 (φC = A)
42, 3sseqtr4d 3308 1 (φB C)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1642   wss 3257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-v 2861  df-nin 3211  df-compl 3212  df-in 3213  df-ss 3259
This theorem is referenced by:  unissint  3950  resdif  5306  fimacnv  5411  ce0addcnnul  6179
  Copyright terms: Public domain W3C validator