New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > syl5sseqr | GIF version |
Description: Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
syl5sseqr.1 | ⊢ B ⊆ A |
syl5sseqr.2 | ⊢ (φ → C = A) |
Ref | Expression |
---|---|
syl5sseqr | ⊢ (φ → B ⊆ C) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5sseqr.1 | . . 3 ⊢ B ⊆ A | |
2 | 1 | a1i 10 | . 2 ⊢ (φ → B ⊆ A) |
3 | syl5sseqr.2 | . 2 ⊢ (φ → C = A) | |
4 | 2, 3 | sseqtr4d 3309 | 1 ⊢ (φ → B ⊆ C) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 ⊆ wss 3258 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 |
This theorem is referenced by: unissint 3951 resdif 5307 fimacnv 5412 ce0addcnnul 6180 |
Copyright terms: Public domain | W3C validator |