| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > df-ss | GIF version | ||
| Description: Define the subclass relationship. Exercise 9 of [TakeutiZaring] p. 18. For example, { 1 , 2 } ⊆ { 1 , 2 , 3 } (ex-ss in set.mm). Note that A ⊆ A (proved in ssid 3291). Contrast this relationship with the relationship A ⊊ B (as will be defined in df-pss 3262). For a more traditional definition, but requiring a dummy variable, see dfss2 3263. Other possible definitions are given by dfss3 3264, dfss4 3490, sspss 3369, ssequn1 3434, ssequn2 3437, sseqin2 3475, and ssdif0 3610. (Contributed by NM, 27-Apr-1994.) | 
| Ref | Expression | 
|---|---|
| df-ss | ⊢ (A ⊆ B ↔ (A ∩ B) = A) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cA | . . 3 class A | |
| 2 | cB | . . 3 class B | |
| 3 | 1, 2 | wss 3258 | . 2 wff A ⊆ B | 
| 4 | 1, 2 | cin 3209 | . . 3 class (A ∩ B) | 
| 5 | 4, 1 | wceq 1642 | . 2 wff (A ∩ B) = A | 
| 6 | 3, 5 | wb 176 | 1 wff (A ⊆ B ↔ (A ∩ B) = A) | 
| Colors of variables: wff setvar class | 
| This definition is referenced by: dfss 3261 dfss1 3461 inabs 3487 nssinpss 3488 dfrab3ss 3534 disjssun 3609 riinn0 4041 rintn0 4057 dfiota4 4373 ssfin 4471 ssdmres 4988 resabs1 4993 | 
| Copyright terms: Public domain | W3C validator |