Proof of Theorem sbequi
Step | Hyp | Ref
| Expression |
1 | | hbsb2 2057 |
. . . . . 6
⊢ (¬ ∀z z = x →
([x / z]φ →
∀z[x / z]φ)) |
2 | | equvini 1987 |
. . . . . . . 8
⊢ (x = y →
∃z(x = z ∧ z = y)) |
3 | | stdpc7 1917 |
. . . . . . . . . 10
⊢ (x = z →
([x / z]φ →
φ)) |
4 | | sbequ1 1918 |
. . . . . . . . . 10
⊢ (z = y →
(φ → [y / z]φ)) |
5 | 3, 4 | sylan9 638 |
. . . . . . . . 9
⊢ ((x = z ∧ z = y) → ([x /
z]φ
→ [y / z]φ)) |
6 | 5 | eximi 1576 |
. . . . . . . 8
⊢ (∃z(x = z ∧ z = y) → ∃z([x / z]φ → [y / z]φ)) |
7 | 2, 6 | syl 15 |
. . . . . . 7
⊢ (x = y →
∃z([x / z]φ →
[y / z]φ)) |
8 | | 19.35 1600 |
. . . . . . 7
⊢ (∃z([x / z]φ → [y / z]φ) ↔ (∀z[x / z]φ → ∃z[y / z]φ)) |
9 | 7, 8 | sylib 188 |
. . . . . 6
⊢ (x = y →
(∀z[x / z]φ →
∃z[y / z]φ)) |
10 | 1, 9 | sylan9 638 |
. . . . 5
⊢ ((¬ ∀z z = x ∧ x = y) → ([x /
z]φ
→ ∃z[y / z]φ)) |
11 | | nfsb2 2058 |
. . . . . 6
⊢ (¬ ∀z z = y →
Ⅎz[y / z]φ) |
12 | 11 | 19.9d 1782 |
. . . . 5
⊢ (¬ ∀z z = y →
(∃z[y / z]φ →
[y / z]φ)) |
13 | 10, 12 | syl9 66 |
. . . 4
⊢ ((¬ ∀z z = x ∧ x = y) → (¬ ∀z z = y →
([x / z]φ →
[y / z]φ))) |
14 | 13 | ex 423 |
. . 3
⊢ (¬ ∀z z = x →
(x = y
→ (¬ ∀z z = y → ([x /
z]φ
→ [y / z]φ)))) |
15 | 14 | com23 72 |
. 2
⊢ (¬ ∀z z = x →
(¬ ∀z z = y → (x =
y → ([x / z]φ → [y / z]φ)))) |
16 | | sbequ2 1650 |
. . . . . 6
⊢ (z = x →
([x / z]φ →
φ)) |
17 | 16 | sps 1754 |
. . . . 5
⊢ (∀z z = x →
([x / z]φ →
φ)) |
18 | 17 | adantr 451 |
. . . 4
⊢ ((∀z z = x ∧ x = y) → ([x /
z]φ
→ φ)) |
19 | | sbequ1 1918 |
. . . . 5
⊢ (x = y →
(φ → [y / x]φ)) |
20 | | drsb1 2022 |
. . . . . 6
⊢ (∀z z = x →
([y / z]φ ↔
[y / x]φ)) |
21 | 20 | biimprd 214 |
. . . . 5
⊢ (∀z z = x →
([y / x]φ →
[y / z]φ)) |
22 | 19, 21 | sylan9r 639 |
. . . 4
⊢ ((∀z z = x ∧ x = y) → (φ
→ [y / z]φ)) |
23 | 18, 22 | syld 40 |
. . 3
⊢ ((∀z z = x ∧ x = y) → ([x /
z]φ
→ [y / z]φ)) |
24 | 23 | ex 423 |
. 2
⊢ (∀z z = x →
(x = y
→ ([x / z]φ →
[y / z]φ))) |
25 | | drsb1 2022 |
. . . . . 6
⊢ (∀z z = y →
([x / z]φ ↔
[x / y]φ)) |
26 | 25 | biimpd 198 |
. . . . 5
⊢ (∀z z = y →
([x / z]φ →
[x / y]φ)) |
27 | | stdpc7 1917 |
. . . . 5
⊢ (x = y →
([x / y]φ →
φ)) |
28 | 26, 27 | sylan9 638 |
. . . 4
⊢ ((∀z z = y ∧ x = y) → ([x /
z]φ
→ φ)) |
29 | 4 | sps 1754 |
. . . . 5
⊢ (∀z z = y →
(φ → [y / z]φ)) |
30 | 29 | adantr 451 |
. . . 4
⊢ ((∀z z = y ∧ x = y) → (φ
→ [y / z]φ)) |
31 | 28, 30 | syld 40 |
. . 3
⊢ ((∀z z = y ∧ x = y) → ([x /
z]φ
→ [y / z]φ)) |
32 | 31 | ex 423 |
. 2
⊢ (∀z z = y →
(x = y
→ ([x / z]φ →
[y / z]φ))) |
33 | 15, 24, 32 | pm2.61ii 157 |
1
⊢ (x = y →
([x / z]φ →
[y / z]φ)) |