NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  sylan9req GIF version

Theorem sylan9req 2406
Description: An equality transitivity deduction. (Contributed by NM, 23-Jun-2007.)
Hypotheses
Ref Expression
sylan9req.1 (φB = A)
sylan9req.2 (ψB = C)
Assertion
Ref Expression
sylan9req ((φ ψ) → A = C)

Proof of Theorem sylan9req
StepHypRef Expression
1 sylan9req.1 . . 3 (φB = A)
21eqcomd 2358 . 2 (φA = B)
3 sylan9req.2 . 2 (ψB = C)
42, 3sylan9eq 2405 1 ((φ ψ) → A = C)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358   = wceq 1642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542  df-cleq 2346
This theorem is referenced by:  fndmu  5185  fodmrnu  5278
  Copyright terms: Public domain W3C validator