NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  sylan9eqr GIF version

Theorem sylan9eqr 2407
Description: An equality transitivity deduction. (Contributed by NM, 8-May-1994.)
Hypotheses
Ref Expression
sylan9eqr.1 (φA = B)
sylan9eqr.2 (ψB = C)
Assertion
Ref Expression
sylan9eqr ((ψ φ) → A = C)

Proof of Theorem sylan9eqr
StepHypRef Expression
1 sylan9eqr.1 . . 3 (φA = B)
2 sylan9eqr.2 . . 3 (ψB = C)
31, 2sylan9eq 2405 . 2 ((φ ψ) → A = C)
43ancoms 439 1 ((ψ φ) → A = C)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358   = wceq 1642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542  df-cleq 2346
This theorem is referenced by:  sbcied2  3084  csbied2  3180  fun2ssres  5146  funssfv  5344  caovmo  5646  fmpt2x  5731  freceq12  6312
  Copyright terms: Public domain W3C validator