New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sylan9eqr | GIF version |
Description: An equality transitivity deduction. (Contributed by NM, 8-May-1994.) |
Ref | Expression |
---|---|
sylan9eqr.1 | ⊢ (φ → A = B) |
sylan9eqr.2 | ⊢ (ψ → B = C) |
Ref | Expression |
---|---|
sylan9eqr | ⊢ ((ψ ∧ φ) → A = C) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan9eqr.1 | . . 3 ⊢ (φ → A = B) | |
2 | sylan9eqr.2 | . . 3 ⊢ (ψ → B = C) | |
3 | 1, 2 | sylan9eq 2405 | . 2 ⊢ ((φ ∧ ψ) → A = C) |
4 | 3 | ancoms 439 | 1 ⊢ ((ψ ∧ φ) → A = C) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 = wceq 1642 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-cleq 2346 |
This theorem is referenced by: sbcied2 3084 csbied2 3180 fun2ssres 5146 funssfv 5344 caovmo 5646 fmpt2x 5731 freceq12 6312 |
Copyright terms: Public domain | W3C validator |