New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > eqcomd | GIF version |
Description: Deduction from commutative law for class equality. (Contributed by NM, 15-Aug-1994.) |
Ref | Expression |
---|---|
eqcomd.1 | ⊢ (φ → A = B) |
Ref | Expression |
---|---|
eqcomd | ⊢ (φ → B = A) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcomd.1 | . 2 ⊢ (φ → A = B) | |
2 | eqcom 2355 | . 2 ⊢ (A = B ↔ B = A) | |
3 | 1, 2 | sylib 188 | 1 ⊢ (φ → B = A) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-cleq 2346 |
This theorem is referenced by: eqtr2d 2386 eqtr3d 2387 eqtr4d 2388 syl5req 2398 syl6req 2402 sylan9req 2406 eqeltrrd 2428 eleqtrrd 2430 syl5eleqr 2440 syl6eqelr 2442 eqnetrrd 2537 neeqtrrd 2541 dedhb 3007 eqsstr3d 3307 sseqtr4d 3309 syl6eqssr 3323 dfrab3ss 3534 uneqdifeq 3639 ifbi 3680 ifbothda 3693 dedth 3704 elimhyp 3711 elimhyp2v 3712 elimhyp3v 3713 elimhyp4v 3714 elimdhyp 3716 keephyp2v 3718 keephyp3v 3719 disjsn2 3788 diftpsn3 3850 unimax 3926 iununi 4051 pwadjoin 4120 iotaex 4357 iota4 4358 vfinspsslem1 4551 vfinspss 4552 phi11lem1 4596 eqbrtrrd 4662 breqtrrd 4666 syl5breqr 4676 syl6eqbrr 4678 opeliunxp 4821 fun2ssres 5146 funimass1 5170 funssfv 5344 fnimapr 5375 fvun 5379 f1oiso2 5501 brtxp 5784 brfns 5834 fnpprod 5844 eqer 5962 uniqs 5985 enadj 6061 nchoicelem1 6290 |
Copyright terms: Public domain | W3C validator |