NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nchoicelem18 GIF version

Theorem nchoicelem18 6307
Description: Lemma for nchoice 6309. Set up stratification for nchoicelem19 6308. (Contributed by SF, 20-Mar-2015.)
Assertion
Ref Expression
nchoicelem18 {x ( Spacx) Fin } V

Proof of Theorem nchoicelem18
Dummy variables c p q are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pm2.1 406 . . . 4 x NC x NC )
2 fnspac 6284 . . . . . . . . . . 11 Spac Fn NC
3 fndm 5183 . . . . . . . . . . 11 ( Spac Fn NC → dom Spac = NC )
42, 3ax-mp 5 . . . . . . . . . 10 dom Spac = NC
54eleq2i 2417 . . . . . . . . 9 (x dom Spacx NC )
6 ndmfv 5350 . . . . . . . . 9 x dom Spac → ( Spacx) = )
75, 6sylnbir 298 . . . . . . . 8 x NC → ( Spacx) = )
8 0fin 4424 . . . . . . . 8 Fin
97, 8syl6eqel 2441 . . . . . . 7 x NC → ( Spacx) Fin )
109pm4.71i 613 . . . . . 6 x NC ↔ (¬ x NC ( Spacx) Fin ))
1110orbi1i 506 . . . . 5 ((¬ x NC (x NC ( Spacx) Fin )) ↔ ((¬ x NC ( Spacx) Fin ) (x NC ( Spacx) Fin )))
12 elun 3221 . . . . . 6 (x ( ∼ NC ∪ ( NC ∩ ⋃1( ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{p, q (p NC q NC q = (2cc p))})))) “ 1c) “ Fin ))) ↔ (x NC x ( NC ∩ ⋃1( ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{p, q (p NC q NC q = (2cc p))})))) “ 1c) “ Fin ))))
13 vex 2863 . . . . . . . 8 x V
1413elcompl 3226 . . . . . . 7 (x NC ↔ ¬ x NC )
15 elin 3220 . . . . . . . 8 (x ( NC ∩ ⋃1( ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{p, q (p NC q NC q = (2cc p))})))) “ 1c) “ Fin )) ↔ (x NC x 1( ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{p, q (p NC q NC q = (2cc p))})))) “ 1c) “ Fin )))
16 spacval 6283 . . . . . . . . . . 11 (x NC → ( Spacx) = Clos1 ({x}, {p, q (p NC q NC q = (2cc p))}))
1716eleq1d 2419 . . . . . . . . . 10 (x NC → (( Spacx) Fin Clos1 ({x}, {p, q (p NC q NC q = (2cc p))}) Fin ))
1813eluni1 4174 . . . . . . . . . . 11 (x 1( ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{p, q (p NC q NC q = (2cc p))})))) “ 1c) “ Fin ) ↔ {x} ( ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{p, q (p NC q NC q = (2cc p))})))) “ 1c) “ Fin ))
19 df-br 4641 . . . . . . . . . . . . . 14 (c ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{p, q (p NC q NC q = (2cc p))})))) “ 1c){x} ↔ c, {x} ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{p, q (p NC q NC q = (2cc p))})))) “ 1c))
20 spacvallem1 6282 . . . . . . . . . . . . . . 15 {p, q (p NC q NC q = (2cc p))} V
21 snex 4112 . . . . . . . . . . . . . . 15 {x} V
2220, 21nchoicelem10 6299 . . . . . . . . . . . . . 14 (c, {x} ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{p, q (p NC q NC q = (2cc p))})))) “ 1c) ↔ c = Clos1 ({x}, {p, q (p NC q NC q = (2cc p))}))
2319, 22bitri 240 . . . . . . . . . . . . 13 (c ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{p, q (p NC q NC q = (2cc p))})))) “ 1c){x} ↔ c = Clos1 ({x}, {p, q (p NC q NC q = (2cc p))}))
2423rexbii 2640 . . . . . . . . . . . 12 (c Fin c ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{p, q (p NC q NC q = (2cc p))})))) “ 1c){x} ↔ c Fin c = Clos1 ({x}, {p, q (p NC q NC q = (2cc p))}))
25 elima 4755 . . . . . . . . . . . 12 ({x} ( ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{p, q (p NC q NC q = (2cc p))})))) “ 1c) “ Fin ) ↔ c Fin c ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{p, q (p NC q NC q = (2cc p))})))) “ 1c){x})
26 risset 2662 . . . . . . . . . . . 12 ( Clos1 ({x}, {p, q (p NC q NC q = (2cc p))}) Finc Fin c = Clos1 ({x}, {p, q (p NC q NC q = (2cc p))}))
2724, 25, 263bitr4i 268 . . . . . . . . . . 11 ({x} ( ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{p, q (p NC q NC q = (2cc p))})))) “ 1c) “ Fin ) ↔ Clos1 ({x}, {p, q (p NC q NC q = (2cc p))}) Fin )
2818, 27bitri 240 . . . . . . . . . 10 (x 1( ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{p, q (p NC q NC q = (2cc p))})))) “ 1c) “ Fin ) ↔ Clos1 ({x}, {p, q (p NC q NC q = (2cc p))}) Fin )
2917, 28syl6rbbr 255 . . . . . . . . 9 (x NC → (x 1( ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{p, q (p NC q NC q = (2cc p))})))) “ 1c) “ Fin ) ↔ ( Spacx) Fin ))
3029pm5.32i 618 . . . . . . . 8 ((x NC x 1( ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{p, q (p NC q NC q = (2cc p))})))) “ 1c) “ Fin )) ↔ (x NC ( Spacx) Fin ))
3115, 30bitri 240 . . . . . . 7 (x ( NC ∩ ⋃1( ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{p, q (p NC q NC q = (2cc p))})))) “ 1c) “ Fin )) ↔ (x NC ( Spacx) Fin ))
3214, 31orbi12i 507 . . . . . 6 ((x NC x ( NC ∩ ⋃1( ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{p, q (p NC q NC q = (2cc p))})))) “ 1c) “ Fin ))) ↔ (¬ x NC (x NC ( Spacx) Fin )))
3312, 32bitri 240 . . . . 5 (x ( ∼ NC ∪ ( NC ∩ ⋃1( ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{p, q (p NC q NC q = (2cc p))})))) “ 1c) “ Fin ))) ↔ (¬ x NC (x NC ( Spacx) Fin )))
34 andir 838 . . . . 5 (((¬ x NC x NC ) ( Spacx) Fin ) ↔ ((¬ x NC ( Spacx) Fin ) (x NC ( Spacx) Fin )))
3511, 33, 343bitr4i 268 . . . 4 (x ( ∼ NC ∪ ( NC ∩ ⋃1( ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{p, q (p NC q NC q = (2cc p))})))) “ 1c) “ Fin ))) ↔ ((¬ x NC x NC ) ( Spacx) Fin ))
361, 35mpbiran 884 . . 3 (x ( ∼ NC ∪ ( NC ∩ ⋃1( ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{p, q (p NC q NC q = (2cc p))})))) “ 1c) “ Fin ))) ↔ ( Spacx) Fin )
3736abbi2i 2465 . 2 ( ∼ NC ∪ ( NC ∩ ⋃1( ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{p, q (p NC q NC q = (2cc p))})))) “ 1c) “ Fin ))) = {x ( Spacx) Fin }
38 ncsex 6112 . . . 4 NC V
3938complex 4105 . . 3 NC V
40 ssetex 4745 . . . . . . . . . 10 S V
4140ins3ex 5799 . . . . . . . . 9 Ins3 S V
4240complex 4105 . . . . . . . . . . . . . 14 S V
4342cnvex 5103 . . . . . . . . . . . . 13 S V
4440cnvex 5103 . . . . . . . . . . . . . 14 S V
4520imageex 5802 . . . . . . . . . . . . . . . 16 Image{p, q (p NC q NC q = (2cc p))} V
4640, 45coex 4751 . . . . . . . . . . . . . . 15 ( S Image{p, q (p NC q NC q = (2cc p))}) V
4746fixex 5790 . . . . . . . . . . . . . 14 Fix ( S Image{p, q (p NC q NC q = (2cc p))}) V
4844, 47resex 5118 . . . . . . . . . . . . 13 ( S Fix ( S Image{p, q (p NC q NC q = (2cc p))})) V
4943, 48txpex 5786 . . . . . . . . . . . 12 ( S ⊗ ( S Fix ( S Image{p, q (p NC q NC q = (2cc p))}))) V
5049rnex 5108 . . . . . . . . . . 11 ran ( S ⊗ ( S Fix ( S Image{p, q (p NC q NC q = (2cc p))}))) V
5150complex 4105 . . . . . . . . . 10 ∼ ran ( S ⊗ ( S Fix ( S Image{p, q (p NC q NC q = (2cc p))}))) V
5251ins2ex 5798 . . . . . . . . 9 Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{p, q (p NC q NC q = (2cc p))}))) V
5341, 52symdifex 4109 . . . . . . . 8 ( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{p, q (p NC q NC q = (2cc p))})))) V
54 1cex 4143 . . . . . . . 8 1c V
5553, 54imaex 4748 . . . . . . 7 (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{p, q (p NC q NC q = (2cc p))})))) “ 1c) V
5655complex 4105 . . . . . 6 ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{p, q (p NC q NC q = (2cc p))})))) “ 1c) V
57 finex 4398 . . . . . 6 Fin V
5856, 57imaex 4748 . . . . 5 ( ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{p, q (p NC q NC q = (2cc p))})))) “ 1c) “ Fin ) V
5958uni1ex 4294 . . . 4 1( ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{p, q (p NC q NC q = (2cc p))})))) “ 1c) “ Fin ) V
6038, 59inex 4106 . . 3 ( NC ∩ ⋃1( ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{p, q (p NC q NC q = (2cc p))})))) “ 1c) “ Fin )) V
6139, 60unex 4107 . 2 ( ∼ NC ∪ ( NC ∩ ⋃1( ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{p, q (p NC q NC q = (2cc p))})))) “ 1c) “ Fin ))) V
6237, 61eqeltrri 2424 1 {x ( Spacx) Fin } V
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   wo 357   wa 358   w3a 934   = wceq 1642   wcel 1710  {cab 2339  wrex 2616  Vcvv 2860  ccompl 3206  cun 3208  cin 3209  csymdif 3210  c0 3551  {csn 3738  1cuni1 4134  1cc1c 4135   Fin cfin 4377  cop 4562  {copab 4623   class class class wbr 4640   S csset 4720   ccom 4722  cima 4723  ccnv 4772  dom cdm 4773  ran crn 4774   cres 4775   Fn wfn 4777  cfv 4782  (class class class)co 5526  ctxp 5736   Fix cfix 5740   Ins2 cins2 5750   Ins3 cins3 5752  Imagecimage 5754   Clos1 cclos1 5873   NC cncs 6089  2cc2c 6095  c cce 6097   Spac cspac 6274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-1st 4724  df-swap 4725  df-sset 4726  df-co 4727  df-ima 4728  df-si 4729  df-id 4768  df-xp 4785  df-cnv 4786  df-rn 4787  df-dm 4788  df-res 4789  df-fun 4790  df-fn 4791  df-f 4792  df-f1 4793  df-fo 4794  df-f1o 4795  df-fv 4796  df-2nd 4798  df-ov 5527  df-oprab 5529  df-mpt 5653  df-mpt2 5655  df-txp 5737  df-fix 5741  df-ins2 5751  df-ins3 5753  df-image 5755  df-ins4 5757  df-si3 5759  df-funs 5761  df-fns 5763  df-pw1fn 5767  df-fullfun 5769  df-clos1 5874  df-trans 5900  df-sym 5909  df-er 5910  df-ec 5948  df-qs 5952  df-map 6002  df-en 6030  df-ncs 6099  df-nc 6102  df-2c 6105  df-ce 6107  df-spac 6275
This theorem is referenced by:  nchoicelem19  6308
  Copyright terms: Public domain W3C validator