NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  sylnbi GIF version

Theorem sylnbi 297
Description: A mixed syllogism inference from a biconditional and an implication. Useful for substituting an antecedent with a definition. (Contributed by Wolf Lammen, 16-Dec-2013.)
Hypotheses
Ref Expression
sylnbi.1 (φψ)
sylnbi.2 ψχ)
Assertion
Ref Expression
sylnbi φχ)

Proof of Theorem sylnbi
StepHypRef Expression
1 sylnbi.1 . . 3 (φψ)
21notbii 287 . 2 φ ↔ ¬ ψ)
3 sylnbi.2 . 2 ψχ)
42, 3sylbi 187 1 φχ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177
This theorem is referenced by:  sylnbir  298  reuun2  3539  iotanul  4355  ndmfv  5350  ndmovcom  5618  fvfullfun  5865
  Copyright terms: Public domain W3C validator