New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > fvmptex | GIF version |
Description: Express a function F whose value B may not always be a set in terms of another function G for which sethood is guaranteed. (Note that ( I ‘B) is just shorthand for if(B ∈ V, B, ∅), and it is always a set by fvex 5340.) Note also that these functions are not the same; wherever B(C) is not a set, C is not in the domain of F (so it evaluates to the empty set), but C is in the domain of G, and G(C) is defined to be the empty set. (Contributed by Mario Carneiro, 14-Jul-2013.) (Revised by Mario Carneiro, 23-Apr-2014.) |
Ref | Expression |
---|---|
fvmptex.1 | ⊢ F = (x ∈ A ↦ B) |
fvmptex.2 | ⊢ G = (x ∈ A ↦ ( I ‘B)) |
Ref | Expression |
---|---|
fvmptex | ⊢ (F ‘C) = (G ‘C) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbeq1 3140 | . . . 4 ⊢ (y = C → [y / x]B = [C / x]B) | |
2 | fvmptex.1 | . . . . 5 ⊢ F = (x ∈ A ↦ B) | |
3 | nfcv 2490 | . . . . . 6 ⊢ ℲyB | |
4 | nfcsb1v 3169 | . . . . . 6 ⊢ Ⅎx[y / x]B | |
5 | csbeq1a 3145 | . . . . . 6 ⊢ (x = y → B = [y / x]B) | |
6 | 3, 4, 5 | cbvmpt 5677 | . . . . 5 ⊢ (x ∈ A ↦ B) = (y ∈ A ↦ [y / x]B) |
7 | 2, 6 | eqtri 2373 | . . . 4 ⊢ F = (y ∈ A ↦ [y / x]B) |
8 | 1, 7 | fvmpti 5700 | . . 3 ⊢ (C ∈ A → (F ‘C) = ( I ‘[C / x]B)) |
9 | 1 | fveq2d 5333 | . . . 4 ⊢ (y = C → ( I ‘[y / x]B) = ( I ‘[C / x]B)) |
10 | fvmptex.2 | . . . . 5 ⊢ G = (x ∈ A ↦ ( I ‘B)) | |
11 | nfcv 2490 | . . . . . 6 ⊢ Ⅎy( I ‘B) | |
12 | nfcv 2490 | . . . . . . 7 ⊢ Ⅎx I | |
13 | 12, 4 | nffv 5335 | . . . . . 6 ⊢ Ⅎx( I ‘[y / x]B) |
14 | 5 | fveq2d 5333 | . . . . . 6 ⊢ (x = y → ( I ‘B) = ( I ‘[y / x]B)) |
15 | 11, 13, 14 | cbvmpt 5677 | . . . . 5 ⊢ (x ∈ A ↦ ( I ‘B)) = (y ∈ A ↦ ( I ‘[y / x]B)) |
16 | 10, 15 | eqtri 2373 | . . . 4 ⊢ G = (y ∈ A ↦ ( I ‘[y / x]B)) |
17 | fvex 5340 | . . . 4 ⊢ ( I ‘[C / x]B) ∈ V | |
18 | 9, 16, 17 | fvmpt 5701 | . . 3 ⊢ (C ∈ A → (G ‘C) = ( I ‘[C / x]B)) |
19 | 8, 18 | eqtr4d 2388 | . 2 ⊢ (C ∈ A → (F ‘C) = (G ‘C)) |
20 | 2 | dmmptss 5686 | . . . . . 6 ⊢ dom F ⊆ A |
21 | 20 | sseli 3270 | . . . . 5 ⊢ (C ∈ dom F → C ∈ A) |
22 | 21 | con3i 127 | . . . 4 ⊢ (¬ C ∈ A → ¬ C ∈ dom F) |
23 | ndmfv 5350 | . . . 4 ⊢ (¬ C ∈ dom F → (F ‘C) = ∅) | |
24 | 22, 23 | syl 15 | . . 3 ⊢ (¬ C ∈ A → (F ‘C) = ∅) |
25 | fvex 5340 | . . . . . 6 ⊢ ( I ‘B) ∈ V | |
26 | 25, 10 | dmmpti 5692 | . . . . 5 ⊢ dom G = A |
27 | 26 | eleq2i 2417 | . . . 4 ⊢ (C ∈ dom G ↔ C ∈ A) |
28 | ndmfv 5350 | . . . 4 ⊢ (¬ C ∈ dom G → (G ‘C) = ∅) | |
29 | 27, 28 | sylnbir 298 | . . 3 ⊢ (¬ C ∈ A → (G ‘C) = ∅) |
30 | 24, 29 | eqtr4d 2388 | . 2 ⊢ (¬ C ∈ A → (F ‘C) = (G ‘C)) |
31 | 19, 30 | pm2.61i 156 | 1 ⊢ (F ‘C) = (G ‘C) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1642 ∈ wcel 1710 [csb 3137 ∅c0 3551 I cid 4764 dom cdm 4773 ‘cfv 4782 ↦ cmpt 5652 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-csb 3138 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-co 4727 df-ima 4728 df-id 4768 df-cnv 4786 df-rn 4787 df-dm 4788 df-fun 4790 df-fn 4791 df-fv 4796 df-mpt 5653 |
This theorem is referenced by: fvmptnf 5724 |
Copyright terms: Public domain | W3C validator |