New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nsspssun | GIF version |
Description: Negation of subclass expressed in terms of proper subclass and union. (Contributed by NM, 15-Sep-2004.) |
Ref | Expression |
---|---|
nsspssun | ⊢ (¬ A ⊆ B ↔ B ⊊ (A ∪ B)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun2 3428 | . . . 4 ⊢ B ⊆ (A ∪ B) | |
2 | 1 | biantrur 492 | . . 3 ⊢ (¬ (A ∪ B) ⊆ B ↔ (B ⊆ (A ∪ B) ∧ ¬ (A ∪ B) ⊆ B)) |
3 | ssid 3291 | . . . . 5 ⊢ B ⊆ B | |
4 | 3 | biantru 491 | . . . 4 ⊢ (A ⊆ B ↔ (A ⊆ B ∧ B ⊆ B)) |
5 | unss 3438 | . . . 4 ⊢ ((A ⊆ B ∧ B ⊆ B) ↔ (A ∪ B) ⊆ B) | |
6 | 4, 5 | bitri 240 | . . 3 ⊢ (A ⊆ B ↔ (A ∪ B) ⊆ B) |
7 | 2, 6 | xchnxbir 300 | . 2 ⊢ (¬ A ⊆ B ↔ (B ⊆ (A ∪ B) ∧ ¬ (A ∪ B) ⊆ B)) |
8 | dfpss3 3356 | . 2 ⊢ (B ⊊ (A ∪ B) ↔ (B ⊆ (A ∪ B) ∧ ¬ (A ∪ B) ⊆ B)) | |
9 | 7, 8 | bitr4i 243 | 1 ⊢ (¬ A ⊆ B ↔ B ⊊ (A ∪ B)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 176 ∧ wa 358 ∪ cun 3208 ⊆ wss 3258 ⊊ wpss 3259 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-ss 3260 df-pss 3262 |
This theorem is referenced by: disjpss 3602 |
Copyright terms: Public domain | W3C validator |