NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  xorneg1 GIF version

Theorem xorneg1 1311
Description: is negated under negation of one argument. (Contributed by Mario Carneiro, 4-Sep-2016.)
Assertion
Ref Expression
xorneg1 ((¬ φψ) ↔ ¬ (φψ))

Proof of Theorem xorneg1
StepHypRef Expression
1 df-xor 1305 . 2 ((¬ φψ) ↔ ¬ (¬ φψ))
2 nbbn 347 . . 3 ((¬ φψ) ↔ ¬ (φψ))
32con2bii 322 . 2 ((φψ) ↔ ¬ (¬ φψ))
4 xnor 1306 . 2 ((φψ) ↔ ¬ (φψ))
51, 3, 43bitr2i 264 1 ((¬ φψ) ↔ ¬ (φψ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 176  wxo 1304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-xor 1305
This theorem is referenced by:  xorneg2  1312  xorneg  1313
  Copyright terms: Public domain W3C validator