NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  xorneg2 GIF version

Theorem xorneg2 1312
Description: is negated under negation of one argument. (Contributed by Mario Carneiro, 4-Sep-2016.)
Assertion
Ref Expression
xorneg2 ((φ ⊻ ¬ ψ) ↔ ¬ (φψ))

Proof of Theorem xorneg2
StepHypRef Expression
1 xorneg1 1311 . 2 ((¬ ψφ) ↔ ¬ (ψφ))
2 xorcom 1307 . 2 ((φ ⊻ ¬ ψ) ↔ (¬ ψφ))
3 xorcom 1307 . . 3 ((φψ) ↔ (ψφ))
43notbii 287 . 2 (¬ (φψ) ↔ ¬ (ψφ))
51, 2, 43bitr4i 268 1 ((φ ⊻ ¬ ψ) ↔ ¬ (φψ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 176  wxo 1304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-xor 1305
This theorem is referenced by:  xorneg  1313  hadnot  1393
  Copyright terms: Public domain W3C validator