| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > xorneg2 | GIF version | ||
| Description: ⊻ is negated under negation of one argument. (Contributed by Mario Carneiro, 4-Sep-2016.) |
| Ref | Expression |
|---|---|
| xorneg2 | ⊢ ((φ ⊻ ¬ ψ) ↔ ¬ (φ ⊻ ψ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xorneg1 1311 | . 2 ⊢ ((¬ ψ ⊻ φ) ↔ ¬ (ψ ⊻ φ)) | |
| 2 | xorcom 1307 | . 2 ⊢ ((φ ⊻ ¬ ψ) ↔ (¬ ψ ⊻ φ)) | |
| 3 | xorcom 1307 | . . 3 ⊢ ((φ ⊻ ψ) ↔ (ψ ⊻ φ)) | |
| 4 | 3 | notbii 287 | . 2 ⊢ (¬ (φ ⊻ ψ) ↔ ¬ (ψ ⊻ φ)) |
| 5 | 1, 2, 4 | 3bitr4i 268 | 1 ⊢ ((φ ⊻ ¬ ψ) ↔ ¬ (φ ⊻ ψ)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 176 ⊻ wxo 1304 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-xor 1305 |
| This theorem is referenced by: xorneg 1313 hadnot 1393 |
| Copyright terms: Public domain | W3C validator |