| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > xorcom | GIF version | ||
| Description: ⊻ is commutative. (Contributed by Mario Carneiro, 4-Sep-2016.) |
| Ref | Expression |
|---|---|
| xorcom | ⊢ ((φ ⊻ ψ) ↔ (ψ ⊻ φ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bicom 191 | . . 3 ⊢ ((φ ↔ ψ) ↔ (ψ ↔ φ)) | |
| 2 | 1 | notbii 287 | . 2 ⊢ (¬ (φ ↔ ψ) ↔ ¬ (ψ ↔ φ)) |
| 3 | df-xor 1305 | . 2 ⊢ ((φ ⊻ ψ) ↔ ¬ (φ ↔ ψ)) | |
| 4 | df-xor 1305 | . 2 ⊢ ((ψ ⊻ φ) ↔ ¬ (ψ ↔ φ)) | |
| 5 | 2, 3, 4 | 3bitr4i 268 | 1 ⊢ ((φ ⊻ ψ) ↔ (ψ ⊻ φ)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 176 ⊻ wxo 1304 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-xor 1305 |
| This theorem is referenced by: xorneg2 1312 hadcoma 1388 hadcomb 1389 cadcoma 1395 |
| Copyright terms: Public domain | W3C validator |