New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > xorneg | GIF version |
Description: ⊻ is unchanged under negation of both arguments. (Contributed by Mario Carneiro, 4-Sep-2016.) |
Ref | Expression |
---|---|
xorneg | ⊢ ((¬ φ ⊻ ¬ ψ) ↔ (φ ⊻ ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xorneg1 1311 | . 2 ⊢ ((¬ φ ⊻ ¬ ψ) ↔ ¬ (φ ⊻ ¬ ψ)) | |
2 | xorneg2 1312 | . . 3 ⊢ ((φ ⊻ ¬ ψ) ↔ ¬ (φ ⊻ ψ)) | |
3 | 2 | con2bii 322 | . 2 ⊢ ((φ ⊻ ψ) ↔ ¬ (φ ⊻ ¬ ψ)) |
4 | 1, 3 | bitr4i 243 | 1 ⊢ ((¬ φ ⊻ ¬ ψ) ↔ (φ ⊻ ψ)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 176 ⊻ wxo 1304 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-xor 1305 |
This theorem is referenced by: hadnot 1393 had0 1403 mtp-xor 1536 |
Copyright terms: Public domain | W3C validator |