| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > 3vded13 | GIF version | ||
| Description: A 3-variable theorem. Experiment with weak deduction theorem. (Contributed by NM, 25-Oct-1998.) |
| Ref | Expression |
|---|---|
| 3vded13.1 | (b ∩ (c →1 a)) ≤ (c →1 (b →1 a)) |
| 3vded13.2 | c ≤ a |
| Ref | Expression |
|---|---|
| 3vded13 | c ≤ (b →1 a) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an1 106 | . . . . 5 (b ∩ 1) = b | |
| 2 | 1 | ax-r1 35 | . . . 4 b = (b ∩ 1) |
| 3 | 3vded13.2 | . . . . . . 7 c ≤ a | |
| 4 | 3 | u1lemle1 710 | . . . . . 6 (c →1 a) = 1 |
| 5 | 4 | ax-r1 35 | . . . . 5 1 = (c →1 a) |
| 6 | 5 | lan 77 | . . . 4 (b ∩ 1) = (b ∩ (c →1 a)) |
| 7 | 2, 6 | ax-r2 36 | . . 3 b = (b ∩ (c →1 a)) |
| 8 | 3vded13.1 | . . 3 (b ∩ (c →1 a)) ≤ (c →1 (b →1 a)) | |
| 9 | 7, 8 | bltr 138 | . 2 b ≤ (c →1 (b →1 a)) |
| 10 | 9 | 3vded11 814 | 1 c ≤ (b →1 a) |
| Colors of variables: term |
| Syntax hints: ≤ wle 2 ∩ wa 7 1wt 8 →1 wi1 12 |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |