Proof of Theorem 3vded21
Step | Hyp | Ref
| Expression |
1 | | 3vded21.2 |
. . . . . . 7
c ≤ (a →0 b) |
2 | | df-i0 43 |
. . . . . . 7
(a →0 b) = (a⊥ ∪ b) |
3 | 1, 2 | lbtr 139 |
. . . . . 6
c ≤ (a⊥ ∪ b) |
4 | | 3vded21.1 |
. . . . . . 7
c ≤ ((a →0 b) →0 (c →2 b)) |
5 | | df-i0 43 |
. . . . . . . 8
((a →0 b) →0 (c →2 b)) = ((a
→0 b)⊥
∪ (c →2 b)) |
6 | 2 | ax-r4 37 |
. . . . . . . . 9
(a →0 b)⊥ = (a⊥ ∪ b)⊥ |
7 | | df-i2 45 |
. . . . . . . . . 10
(c →2 b) = (b ∪
(c⊥ ∩ b⊥ )) |
8 | | anor3 90 |
. . . . . . . . . . 11
(c⊥ ∩ b⊥ ) = (c ∪ b)⊥ |
9 | 8 | lor 70 |
. . . . . . . . . 10
(b ∪ (c⊥ ∩ b⊥ )) = (b ∪ (c ∪
b)⊥ ) |
10 | 7, 9 | ax-r2 36 |
. . . . . . . . 9
(c →2 b) = (b ∪
(c ∪ b)⊥ ) |
11 | 6, 10 | 2or 72 |
. . . . . . . 8
((a →0 b)⊥ ∪ (c →2 b)) = ((a⊥ ∪ b)⊥ ∪ (b ∪ (c ∪
b)⊥ )) |
12 | | ax-a2 31 |
. . . . . . . 8
((a⊥ ∪ b)⊥ ∪ (b ∪ (c ∪
b)⊥ )) = ((b ∪ (c ∪
b)⊥ ) ∪ (a⊥ ∪ b)⊥ ) |
13 | 5, 11, 12 | 3tr 65 |
. . . . . . 7
((a →0 b) →0 (c →2 b)) = ((b ∪
(c ∪ b)⊥ ) ∪ (a⊥ ∪ b)⊥ ) |
14 | 4, 13 | lbtr 139 |
. . . . . 6
c ≤ ((b ∪ (c ∪
b)⊥ ) ∪ (a⊥ ∪ b)⊥ ) |
15 | 3, 14 | ler2an 173 |
. . . . 5
c ≤ ((a⊥ ∪ b) ∩ ((b
∪ (c ∪ b)⊥ ) ∪ (a⊥ ∪ b)⊥ )) |
16 | | comor2 462 |
. . . . . . . 8
(a⊥ ∪ b) C b |
17 | 3 | leror 152 |
. . . . . . . . . . . 12
(c ∪ b) ≤ ((a⊥ ∪ b) ∪ b) |
18 | | ax-a3 32 |
. . . . . . . . . . . . 13
((a⊥ ∪ b) ∪ b) =
(a⊥ ∪ (b ∪ b)) |
19 | | oridm 110 |
. . . . . . . . . . . . . 14
(b ∪ b) = b |
20 | 19 | lor 70 |
. . . . . . . . . . . . 13
(a⊥ ∪ (b ∪ b)) =
(a⊥ ∪ b) |
21 | 18, 20 | ax-r2 36 |
. . . . . . . . . . . 12
((a⊥ ∪ b) ∪ b) =
(a⊥ ∪ b) |
22 | 17, 21 | lbtr 139 |
. . . . . . . . . . 11
(c ∪ b) ≤ (a⊥ ∪ b) |
23 | 22 | lecom 180 |
. . . . . . . . . 10
(c ∪ b) C (a⊥ ∪ b) |
24 | 23 | comcom 453 |
. . . . . . . . 9
(a⊥ ∪ b) C (c
∪ b) |
25 | 24 | comcom2 183 |
. . . . . . . 8
(a⊥ ∪ b) C (c
∪ b)⊥ |
26 | 16, 25 | com2or 483 |
. . . . . . 7
(a⊥ ∪ b) C (b
∪ (c ∪ b)⊥ ) |
27 | | comid 187 |
. . . . . . . 8
(a⊥ ∪ b) C (a⊥ ∪ b) |
28 | 27 | comcom2 183 |
. . . . . . 7
(a⊥ ∪ b) C (a⊥ ∪ b)⊥ |
29 | 26, 28 | fh1 469 |
. . . . . 6
((a⊥ ∪ b) ∩ ((b
∪ (c ∪ b)⊥ ) ∪ (a⊥ ∪ b)⊥ )) = (((a⊥ ∪ b) ∩ (b
∪ (c ∪ b)⊥ )) ∪ ((a⊥ ∪ b) ∩ (a⊥ ∪ b)⊥ )) |
30 | | or0 102 |
. . . . . . 7
((((a⊥ ∪
b) ∩ b) ∪ ((a⊥ ∪ b) ∩ (c
∪ b)⊥ )) ∪ 0) =
(((a⊥ ∪ b) ∩ b)
∪ ((a⊥ ∪ b) ∩ (c
∪ b)⊥
)) |
31 | 16, 25 | fh1 469 |
. . . . . . . . 9
((a⊥ ∪ b) ∩ (b
∪ (c ∪ b)⊥ )) = (((a⊥ ∪ b) ∩ b)
∪ ((a⊥ ∪ b) ∩ (c
∪ b)⊥
)) |
32 | 31 | ax-r1 35 |
. . . . . . . 8
(((a⊥ ∪
b) ∩ b) ∪ ((a⊥ ∪ b) ∩ (c
∪ b)⊥ )) = ((a⊥ ∪ b) ∩ (b
∪ (c ∪ b)⊥ )) |
33 | | dff 101 |
. . . . . . . 8
0 = ((a⊥ ∪
b) ∩ (a⊥ ∪ b)⊥ ) |
34 | 32, 33 | 2or 72 |
. . . . . . 7
((((a⊥ ∪
b) ∩ b) ∪ ((a⊥ ∪ b) ∩ (c
∪ b)⊥ )) ∪ 0) =
(((a⊥ ∪ b) ∩ (b
∪ (c ∪ b)⊥ )) ∪ ((a⊥ ∪ b) ∩ (a⊥ ∪ b)⊥ )) |
35 | | ax-a2 31 |
. . . . . . . . . 10
(a⊥ ∪ b) = (b ∪
a⊥ ) |
36 | 35 | ran 78 |
. . . . . . . . 9
((a⊥ ∪ b) ∩ b) =
((b ∪ a⊥ ) ∩ b) |
37 | | ancom 74 |
. . . . . . . . 9
((b ∪ a⊥ ) ∩ b) = (b ∩
(b ∪ a⊥ )) |
38 | | anabs 121 |
. . . . . . . . 9
(b ∩ (b ∪ a⊥ )) = b |
39 | 36, 37, 38 | 3tr 65 |
. . . . . . . 8
((a⊥ ∪ b) ∩ b) =
b |
40 | 39 | ax-r5 38 |
. . . . . . 7
(((a⊥ ∪
b) ∩ b) ∪ ((a⊥ ∪ b) ∩ (c
∪ b)⊥ )) = (b ∪ ((a⊥ ∪ b) ∩ (c
∪ b)⊥
)) |
41 | 30, 34, 40 | 3tr2 64 |
. . . . . 6
(((a⊥ ∪
b) ∩ (b ∪ (c ∪
b)⊥ )) ∪ ((a⊥ ∪ b) ∩ (a⊥ ∪ b)⊥ )) = (b ∪ ((a⊥ ∪ b) ∩ (c
∪ b)⊥
)) |
42 | 29, 41 | ax-r2 36 |
. . . . 5
((a⊥ ∪ b) ∩ ((b
∪ (c ∪ b)⊥ ) ∪ (a⊥ ∪ b)⊥ )) = (b ∪ ((a⊥ ∪ b) ∩ (c
∪ b)⊥
)) |
43 | 15, 42 | lbtr 139 |
. . . 4
c ≤ (b ∪ ((a⊥ ∪ b) ∩ (c
∪ b)⊥
)) |
44 | 43 | leran 153 |
. . 3
(c ∩ (c ∪ b)) ≤
((b ∪ ((a⊥ ∪ b) ∩ (c
∪ b)⊥ )) ∩
(c ∪ b)) |
45 | | anabs 121 |
. . 3
(c ∩ (c ∪ b)) =
c |
46 | | comor2 462 |
. . . . 5
(c ∪ b) C b |
47 | | comid 187 |
. . . . . . 7
(c ∪ b) C (c
∪ b) |
48 | 47 | comcom2 183 |
. . . . . 6
(c ∪ b) C (c
∪ b)⊥ |
49 | 23, 48 | com2an 484 |
. . . . 5
(c ∪ b) C ((a⊥ ∪ b) ∩ (c
∪ b)⊥
) |
50 | 46, 49 | fh1r 473 |
. . . 4
((b ∪ ((a⊥ ∪ b) ∩ (c
∪ b)⊥ )) ∩
(c ∪ b)) = ((b ∩
(c ∪ b)) ∪ (((a⊥ ∪ b) ∩ (c
∪ b)⊥ ) ∩
(c ∪ b))) |
51 | | ax-a2 31 |
. . . . . . 7
(c ∪ b) = (b ∪
c) |
52 | 51 | lan 77 |
. . . . . 6
(b ∩ (c ∪ b)) =
(b ∩ (b ∪ c)) |
53 | | anabs 121 |
. . . . . 6
(b ∩ (b ∪ c)) =
b |
54 | 52, 53 | ax-r2 36 |
. . . . 5
(b ∩ (c ∪ b)) =
b |
55 | | an32 83 |
. . . . . 6
(((a⊥ ∪
b) ∩ (c ∪ b)⊥ ) ∩ (c ∪ b)) =
(((a⊥ ∪ b) ∩ (c
∪ b)) ∩ (c ∪ b)⊥ ) |
56 | | anass 76 |
. . . . . 6
(((a⊥ ∪
b) ∩ (c ∪ b))
∩ (c ∪ b)⊥ ) = ((a⊥ ∪ b) ∩ ((c
∪ b) ∩ (c ∪ b)⊥ )) |
57 | | dff 101 |
. . . . . . . . 9
0 = ((c ∪ b) ∩ (c
∪ b)⊥
) |
58 | 57 | lan 77 |
. . . . . . . 8
((a⊥ ∪ b) ∩ 0) = ((a⊥ ∪ b) ∩ ((c
∪ b) ∩ (c ∪ b)⊥ )) |
59 | 58 | ax-r1 35 |
. . . . . . 7
((a⊥ ∪ b) ∩ ((c
∪ b) ∩ (c ∪ b)⊥ )) = ((a⊥ ∪ b) ∩ 0) |
60 | | an0 108 |
. . . . . . 7
((a⊥ ∪ b) ∩ 0) = 0 |
61 | 59, 60 | ax-r2 36 |
. . . . . 6
((a⊥ ∪ b) ∩ ((c
∪ b) ∩ (c ∪ b)⊥ )) = 0 |
62 | 55, 56, 61 | 3tr 65 |
. . . . 5
(((a⊥ ∪
b) ∩ (c ∪ b)⊥ ) ∩ (c ∪ b)) =
0 |
63 | 54, 62 | 2or 72 |
. . . 4
((b ∩ (c ∪ b))
∪ (((a⊥ ∪ b) ∩ (c
∪ b)⊥ ) ∩
(c ∪ b))) = (b ∪
0) |
64 | 50, 63 | ax-r2 36 |
. . 3
((b ∪ ((a⊥ ∪ b) ∩ (c
∪ b)⊥ )) ∩
(c ∪ b)) = (b ∪
0) |
65 | 44, 45, 64 | le3tr2 141 |
. 2
c ≤ (b ∪ 0) |
66 | | or0 102 |
. 2
(b ∪ 0) = b |
67 | 65, 66 | lbtr 139 |
1
c ≤ b |