Proof of Theorem 3vded11
Step | Hyp | Ref
| Expression |
1 | | le1 146 |
. . 3
(c →1 (b →1 a)) ≤ 1 |
2 | | df-t 41 |
. . . . 5
1 = ((b ∪ c⊥ ) ∪ (b ∪ c⊥ )⊥
) |
3 | | ancom 74 |
. . . . . . . 8
(c ∩ b⊥ ) = (b⊥ ∩ c) |
4 | | anor2 89 |
. . . . . . . 8
(b⊥ ∩ c) = (b ∪
c⊥
)⊥ |
5 | 3, 4 | ax-r2 36 |
. . . . . . 7
(c ∩ b⊥ ) = (b ∪ c⊥
)⊥ |
6 | 5 | lor 70 |
. . . . . 6
((b ∪ c⊥ ) ∪ (c ∩ b⊥ )) = ((b ∪ c⊥ ) ∪ (b ∪ c⊥ )⊥
) |
7 | 6 | ax-r1 35 |
. . . . 5
((b ∪ c⊥ ) ∪ (b ∪ c⊥ )⊥ ) =
((b ∪ c⊥ ) ∪ (c ∩ b⊥ )) |
8 | | ax-a3 32 |
. . . . 5
((b ∪ c⊥ ) ∪ (c ∩ b⊥ )) = (b ∪ (c⊥ ∪ (c ∩ b⊥ ))) |
9 | 2, 7, 8 | 3tr 65 |
. . . 4
1 = (b ∪ (c⊥ ∪ (c ∩ b⊥ ))) |
10 | | 3vded11.1 |
. . . . 5
b ≤ (c →1 (b →1 a)) |
11 | | leo 158 |
. . . . . . . . 9
b⊥ ≤ (b⊥ ∪ (b ∩ a)) |
12 | | df-i1 44 |
. . . . . . . . . 10
(b →1 a) = (b⊥ ∪ (b ∩ a)) |
13 | 12 | ax-r1 35 |
. . . . . . . . 9
(b⊥ ∪ (b ∩ a)) =
(b →1 a) |
14 | 11, 13 | lbtr 139 |
. . . . . . . 8
b⊥ ≤ (b →1 a) |
15 | 14 | lelan 167 |
. . . . . . 7
(c ∩ b⊥ ) ≤ (c ∩ (b
→1 a)) |
16 | 15 | lelor 166 |
. . . . . 6
(c⊥ ∪ (c ∩ b⊥ )) ≤ (c⊥ ∪ (c ∩ (b
→1 a))) |
17 | | df-i1 44 |
. . . . . . 7
(c →1 (b →1 a)) = (c⊥ ∪ (c ∩ (b
→1 a))) |
18 | 17 | ax-r1 35 |
. . . . . 6
(c⊥ ∪ (c ∩ (b
→1 a))) = (c →1 (b →1 a)) |
19 | 16, 18 | lbtr 139 |
. . . . 5
(c⊥ ∪ (c ∩ b⊥ )) ≤ (c →1 (b →1 a)) |
20 | 10, 19 | lel2or 170 |
. . . 4
(b ∪ (c⊥ ∪ (c ∩ b⊥ ))) ≤ (c →1 (b →1 a)) |
21 | 9, 20 | bltr 138 |
. . 3
1 ≤ (c →1
(b →1 a)) |
22 | 1, 21 | lebi 145 |
. 2
(c →1 (b →1 a)) = 1 |
23 | 22 | u1lemle2 715 |
1
c ≤ (b →1 a) |