Proof of Theorem 3vded12
Step | Hyp | Ref
| Expression |
1 | | le1 146 |
. . 3
(c →1 (b →1 a)) ≤ 1 |
2 | | df-t 41 |
. . . 4
1 = (a ∪ a⊥ ) |
3 | | an1 106 |
. . . . . . . 8
(a ∩ 1) = a |
4 | 3 | ax-r1 35 |
. . . . . . 7
a = (a ∩ 1) |
5 | | 3vded12.2 |
. . . . . . . . . 10
c ≤ a |
6 | 5 | u1lemle1 710 |
. . . . . . . . 9
(c →1 a) = 1 |
7 | 6 | lan 77 |
. . . . . . . 8
(a ∩ (c →1 a)) = (a ∩
1) |
8 | 7 | ax-r1 35 |
. . . . . . 7
(a ∩ 1) = (a ∩ (c
→1 a)) |
9 | 4, 8 | ax-r2 36 |
. . . . . 6
a = (a ∩ (c
→1 a)) |
10 | | 3vded12.1 |
. . . . . 6
(a ∩ (c →1 a)) ≤ (c
→1 (b →1
a)) |
11 | 9, 10 | bltr 138 |
. . . . 5
a ≤ (c →1 (b →1 a)) |
12 | 5 | lecon 154 |
. . . . . 6
a⊥ ≤ c⊥ |
13 | | leo 158 |
. . . . . . 7
c⊥ ≤ (c⊥ ∪ (c ∩ (b
→1 a))) |
14 | | df-i1 44 |
. . . . . . . 8
(c →1 (b →1 a)) = (c⊥ ∪ (c ∩ (b
→1 a))) |
15 | 14 | ax-r1 35 |
. . . . . . 7
(c⊥ ∪ (c ∩ (b
→1 a))) = (c →1 (b →1 a)) |
16 | 13, 15 | lbtr 139 |
. . . . . 6
c⊥ ≤ (c →1 (b →1 a)) |
17 | 12, 16 | letr 137 |
. . . . 5
a⊥ ≤ (c →1 (b →1 a)) |
18 | 11, 17 | lel2or 170 |
. . . 4
(a ∪ a⊥ ) ≤ (c →1 (b →1 a)) |
19 | 2, 18 | bltr 138 |
. . 3
1 ≤ (c →1
(b →1 a)) |
20 | 1, 19 | lebi 145 |
. 2
(c →1 (b →1 a)) = 1 |
21 | 20 | u1lemle2 715 |
1
c ≤ (b →1 a) |