Proof of Theorem dp15leme
Step | Hyp | Ref
| Expression |
1 | | ax-a2 31 |
. . . . . . 7
(a1 ∪ a2) = (a2 ∪ a1) |
2 | | ax-a2 31 |
. . . . . . . 8
(a1 ∪ b1) = (b1 ∪ a1) |
3 | 2 | lan 77 |
. . . . . . 7
(a0 ∩ (a1 ∪ b1)) = (a0 ∩ (b1 ∪ a1)) |
4 | 1, 3 | 2or 72 |
. . . . . 6
((a1 ∪ a2) ∪ (a0 ∩ (a1 ∪ b1))) = ((a2 ∪ a1) ∪ (a0 ∩ (b1 ∪ a1))) |
5 | | orass 75 |
. . . . . 6
((a2 ∪ a1) ∪ (a0 ∩ (b1 ∪ a1))) = (a2 ∪ (a1 ∪ (a0 ∩ (b1 ∪ a1)))) |
6 | 4, 5 | tr 62 |
. . . . 5
((a1 ∪ a2) ∪ (a0 ∩ (a1 ∪ b1))) = (a2 ∪ (a1 ∪ (a0 ∩ (b1 ∪ a1)))) |
7 | | ml3le 1129 |
. . . . . 6
(a1 ∪ (a0 ∩ (b1 ∪ a1))) ≤ (a1 ∪ (b1 ∩ (a0 ∪ a1))) |
8 | 7 | lelor 166 |
. . . . 5
(a2 ∪ (a1 ∪ (a0 ∩ (b1 ∪ a1)))) ≤ (a2 ∪ (a1 ∪ (b1 ∩ (a0 ∪ a1)))) |
9 | 6, 8 | bltr 138 |
. . . 4
((a1 ∪ a2) ∪ (a0 ∩ (a1 ∪ b1))) ≤ (a2 ∪ (a1 ∪ (b1 ∩ (a0 ∪ a1)))) |
10 | | orass 75 |
. . . . . 6
((a2 ∪ a1) ∪ (b1 ∩ (a0 ∪ a1))) = (a2 ∪ (a1 ∪ (b1 ∩ (a0 ∪ a1)))) |
11 | 10 | cm 61 |
. . . . 5
(a2 ∪ (a1 ∪ (b1 ∩ (a0 ∪ a1)))) = ((a2 ∪ a1) ∪ (b1 ∩ (a0 ∪ a1))) |
12 | | ax-a2 31 |
. . . . . 6
(a2 ∪ a1) = (a1 ∪ a2) |
13 | 12 | ror 71 |
. . . . 5
((a2 ∪ a1) ∪ (b1 ∩ (a0 ∪ a1))) = ((a1 ∪ a2) ∪ (b1 ∩ (a0 ∪ a1))) |
14 | 11, 13 | tr 62 |
. . . 4
(a2 ∪ (a1 ∪ (b1 ∩ (a0 ∪ a1)))) = ((a1 ∪ a2) ∪ (b1 ∩ (a0 ∪ a1))) |
15 | 9, 14 | lbtr 139 |
. . 3
((a1 ∪ a2) ∪ (a0 ∩ (a1 ∪ b1))) ≤ ((a1 ∪ a2) ∪ (b1 ∩ (a0 ∪ a1))) |
16 | 15 | leran 153 |
. 2
(((a1 ∪ a2) ∪ (a0 ∩ (a1 ∪ b1))) ∩ (b1 ∪ b2)) ≤ (((a1 ∪ a2) ∪ (b1 ∩ (a0 ∪ a1))) ∩ (b1 ∪ b2)) |
17 | 16 | lelor 166 |
1
(((a0 ∪ a2) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b2)) ∪ (((a1 ∪ a2) ∪ (a0 ∩ (a1 ∪ b1))) ∩ (b1 ∪ b2))) ≤ (((a0 ∪ a2) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b2)) ∪ (((a1 ∪ a2) ∪ (b1 ∩ (a0 ∪ a1))) ∩ (b1 ∪ b2))) |