Proof of Theorem dp15lemd
Step | Hyp | Ref
| Expression |
1 | | or12 80 |
. . . 4
(a0 ∪ (a2 ∪ (a0 ∩ (a1 ∪ b1)))) = (a2 ∪ (a0 ∪ (a0 ∩ (a1 ∪ b1)))) |
2 | | orabs 120 |
. . . . 5
(a0 ∪ (a0 ∩ (a1 ∪ b1))) = a0 |
3 | 2 | lor 70 |
. . . 4
(a2 ∪ (a0 ∪ (a0 ∩ (a1 ∪ b1)))) = (a2 ∪ a0) |
4 | | orcom 73 |
. . . 4
(a2 ∪ a0) = (a0 ∪ a2) |
5 | 1, 3, 4 | 3tr 65 |
. . 3
(a0 ∪ (a2 ∪ (a0 ∩ (a1 ∪ b1)))) = (a0 ∪ a2) |
6 | 5 | ran 78 |
. 2
((a0 ∪ (a2 ∪ (a0 ∩ (a1 ∪ b1)))) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b2)) = ((a0 ∪ a2) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b2)) |
7 | | orass 75 |
. . . 4
((a1 ∪ a2) ∪ (a0 ∩ (a1 ∪ b1))) = (a1 ∪ (a2 ∪ (a0 ∩ (a1 ∪ b1)))) |
8 | 7 | ran 78 |
. . 3
(((a1 ∪ a2) ∪ (a0 ∩ (a1 ∪ b1))) ∩ (b1 ∪ b2)) = ((a1 ∪ (a2 ∪ (a0 ∩ (a1 ∪ b1)))) ∩ (b1 ∪ b2)) |
9 | 8 | cm 61 |
. 2
((a1 ∪ (a2 ∪ (a0 ∩ (a1 ∪ b1)))) ∩ (b1 ∪ b2)) = (((a1 ∪ a2) ∪ (a0 ∩ (a1 ∪ b1))) ∩ (b1 ∪ b2)) |
10 | 6, 9 | 2or 72 |
1
(((a0 ∪ (a2 ∪ (a0 ∩ (a1 ∪ b1)))) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b2)) ∪ ((a1 ∪ (a2 ∪ (a0 ∩ (a1 ∪ b1)))) ∩ (b1 ∪ b2))) = (((a0 ∪ a2) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b2)) ∪ (((a1 ∪ a2) ∪ (a0 ∩ (a1 ∪ b1))) ∩ (b1 ∪ b2))) |