Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > ml3le | GIF version |
Description: Form of modular law that swaps two terms. (Contributed by NM, 1-Apr-2012.) |
Ref | Expression |
---|---|
ml3le | (a ∪ (b ∩ (c ∪ a))) ≤ (a ∪ (c ∩ (b ∪ a))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lear 161 | . . . . 5 (b ∩ (c ∪ a)) ≤ (c ∪ a) | |
2 | 1 | lelor 166 | . . . 4 (a ∪ (b ∩ (c ∪ a))) ≤ (a ∪ (c ∪ a)) |
3 | or12 80 | . . . . 5 (a ∪ (c ∪ a)) = (c ∪ (a ∪ a)) | |
4 | oridm 110 | . . . . . 6 (a ∪ a) = a | |
5 | 4 | lor 70 | . . . . 5 (c ∪ (a ∪ a)) = (c ∪ a) |
6 | orcom 73 | . . . . 5 (c ∪ a) = (a ∪ c) | |
7 | 3, 5, 6 | 3tr 65 | . . . 4 (a ∪ (c ∪ a)) = (a ∪ c) |
8 | 2, 7 | lbtr 139 | . . 3 (a ∪ (b ∩ (c ∪ a))) ≤ (a ∪ c) |
9 | leor 159 | . . . 4 a ≤ (b ∪ a) | |
10 | leao1 162 | . . . 4 (b ∩ (c ∪ a)) ≤ (b ∪ a) | |
11 | 9, 10 | lel2or 170 | . . 3 (a ∪ (b ∩ (c ∪ a))) ≤ (b ∪ a) |
12 | 8, 11 | ler2an 173 | . 2 (a ∪ (b ∩ (c ∪ a))) ≤ ((a ∪ c) ∩ (b ∪ a)) |
13 | 9 | mlduali 1128 | . 2 ((a ∪ c) ∩ (b ∪ a)) = (a ∪ (c ∩ (b ∪ a))) |
14 | 12, 13 | lbtr 139 | 1 (a ∪ (b ∩ (c ∪ a))) ≤ (a ∪ (c ∩ (b ∪ a))) |
Colors of variables: term |
Syntax hints: ≤ wle 2 ∪ wo 6 ∩ wa 7 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-ml 1122 |
This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-le1 130 df-le2 131 |
This theorem is referenced by: ml3 1130 dp15leme 1158 xdp15 1199 xxdp15 1202 xdp45lem 1204 xdp43lem 1205 xdp45 1206 xdp43 1207 3dp43 1208 |
Copyright terms: Public domain | W3C validator |