Proof of Theorem dp35lemb
Step | Hyp | Ref
| Expression |
1 | | dp35lem.3 |
. . . . . . 7
c2 = ((a0 ∪ a1) ∩ (b0 ∪ b1)) |
2 | 1 | ran 78 |
. . . . . 6
(c2 ∩ (c0 ∪ c1)) = (((a0 ∪ a1) ∩ (b0 ∪ b1)) ∩ (c0 ∪ c1)) |
3 | | an32 83 |
. . . . . 6
(((a0 ∪ a1) ∩ (b0 ∪ b1)) ∩ (c0 ∪ c1)) = (((a0 ∪ a1) ∩ (c0 ∪ c1)) ∩ (b0 ∪ b1)) |
4 | 2, 3 | tr 62 |
. . . . 5
(c2 ∩ (c0 ∪ c1)) = (((a0 ∪ a1) ∩ (c0 ∪ c1)) ∩ (b0 ∪ b1)) |
5 | 4 | lor 70 |
. . . 4
(b1 ∪ (c2 ∩ (c0 ∪ c1))) = (b1 ∪ (((a0 ∪ a1) ∩ (c0 ∪ c1)) ∩ (b0 ∪ b1))) |
6 | | leor 159 |
. . . . 5
b1 ≤ (b0 ∪ b1) |
7 | 6 | ml2i 1125 |
. . . 4
(b1 ∪ (((a0 ∪ a1) ∩ (c0 ∪ c1)) ∩ (b0 ∪ b1))) = ((b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1))) ∩ (b0 ∪ b1)) |
8 | | ancom 74 |
. . . 4
((b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1))) ∩ (b0 ∪ b1)) = ((b0 ∪ b1) ∩ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1)))) |
9 | 5, 7, 8 | 3tr 65 |
. . 3
(b1 ∪ (c2 ∩ (c0 ∪ c1))) = ((b0 ∪ b1) ∩ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1)))) |
10 | 9 | lan 77 |
. 2
(b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1)))) = (b0 ∩ ((b0 ∪ b1) ∩ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1))))) |
11 | | anass 76 |
. . 3
((b0 ∩ (b0 ∪ b1)) ∩ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1)))) = (b0 ∩ ((b0 ∪ b1) ∩ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1))))) |
12 | 11 | cm 61 |
. 2
(b0 ∩ ((b0 ∪ b1) ∩ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1))))) = ((b0 ∩ (b0 ∪ b1)) ∩ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1)))) |
13 | | anabs 121 |
. . 3
(b0 ∩ (b0 ∪ b1)) = b0 |
14 | 13 | ran 78 |
. 2
((b0 ∩ (b0 ∪ b1)) ∩ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1)))) = (b0 ∩ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1)))) |
15 | 10, 12, 14 | 3tr 65 |
1
(b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1)))) = (b0 ∩ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1)))) |