Proof of Theorem dp35lemc
Step | Hyp | Ref
| Expression |
1 | | or32 82 |
. . 3
(((a0 ∩ b0) ∪ b1) ∪ (c2 ∩ (c0 ∪ c1))) = (((a0 ∩ b0) ∪ (c2 ∩ (c0 ∪ c1))) ∪ b1) |
2 | | orcom 73 |
. . 3
(((a0 ∩ b0) ∪ (c2 ∩ (c0 ∪ c1))) ∪ b1) = (b1 ∪ ((a0 ∩ b0) ∪ (c2 ∩ (c0 ∪ c1)))) |
3 | | leo 158 |
. . . . . . . 8
a0 ≤ (a0 ∪ a1) |
4 | | leo 158 |
. . . . . . . 8
b0 ≤ (b0 ∪ b1) |
5 | 3, 4 | le2an 169 |
. . . . . . 7
(a0 ∩ b0) ≤ ((a0 ∪ a1) ∩ (b0 ∪ b1)) |
6 | | dp35lem.3 |
. . . . . . . 8
c2 = ((a0 ∪ a1) ∩ (b0 ∪ b1)) |
7 | 6 | cm 61 |
. . . . . . 7
((a0 ∪ a1) ∩ (b0 ∪ b1)) = c2 |
8 | 5, 7 | lbtr 139 |
. . . . . 6
(a0 ∩ b0) ≤ c2 |
9 | | leo 158 |
. . . . . . . . 9
a0 ≤ (a0 ∪ a2) |
10 | | leo 158 |
. . . . . . . . 9
b0 ≤ (b0 ∪ b2) |
11 | 9, 10 | le2an 169 |
. . . . . . . 8
(a0 ∩ b0) ≤ ((a0 ∪ a2) ∩ (b0 ∪ b2)) |
12 | | dp35lem.2 |
. . . . . . . . 9
c1 = ((a0 ∪ a2) ∩ (b0 ∪ b2)) |
13 | 12 | cm 61 |
. . . . . . . 8
((a0 ∪ a2) ∩ (b0 ∪ b2)) = c1 |
14 | 11, 13 | lbtr 139 |
. . . . . . 7
(a0 ∩ b0) ≤ c1 |
15 | 14 | lerr 150 |
. . . . . 6
(a0 ∩ b0) ≤ (c0 ∪ c1) |
16 | 8, 15 | ler2an 173 |
. . . . 5
(a0 ∩ b0) ≤ (c2 ∩ (c0 ∪ c1)) |
17 | 16 | df-le2 131 |
. . . 4
((a0 ∩ b0) ∪ (c2 ∩ (c0 ∪ c1))) = (c2 ∩ (c0 ∪ c1)) |
18 | 17 | lor 70 |
. . 3
(b1 ∪ ((a0 ∩ b0) ∪ (c2 ∩ (c0 ∪ c1)))) = (b1 ∪ (c2 ∩ (c0 ∪ c1))) |
19 | 1, 2, 18 | 3tr 65 |
. 2
(((a0 ∩ b0) ∪ b1) ∪ (c2 ∩ (c0 ∪ c1))) = (b1 ∪ (c2 ∩ (c0 ∪ c1))) |
20 | 19 | lan 77 |
1
(b0 ∩ (((a0 ∩ b0) ∪ b1) ∪ (c2 ∩ (c0 ∪ c1)))) = (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1)))) |