Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > an32 | GIF version |
Description: Swap conjuncts. (Contributed by NM, 27-Aug-1997.) |
Ref | Expression |
---|---|
an32 | ((a ∩ b) ∩ c) = ((a ∩ c) ∩ b) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 74 | . . 3 (b ∩ c) = (c ∩ b) | |
2 | 1 | lan 77 | . 2 (a ∩ (b ∩ c)) = (a ∩ (c ∩ b)) |
3 | anass 76 | . 2 ((a ∩ b) ∩ c) = (a ∩ (b ∩ c)) | |
4 | anass 76 | . 2 ((a ∩ c) ∩ b) = (a ∩ (c ∩ b)) | |
5 | 2, 3, 4 | 3tr1 63 | 1 ((a ∩ b) ∩ c) = ((a ∩ c) ∩ b) |
Colors of variables: term |
Syntax hints: = wb 1 ∩ wa 7 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 |
This theorem is referenced by: lel 151 k1-4 359 wlel 392 gsth 489 i3bi 496 ud2lem2 564 ud3lem1a 566 ud3lem1b 567 ud3lem1d 569 ud3lem2 571 ud3lem3b 573 ud3lem3c 574 ud4lem1a 577 ud4lem1b 578 ud5lem1b 587 ud5lem2 590 ud5lem3a 591 ud5lem3b 592 ud5lem3c 593 u1lemaa 600 u3lemaa 602 u4lemaa 603 u5lemaa 604 u2lemana 606 u3lemana 607 u4lemana 608 u5lemana 609 u3lemab 612 u4lemab 613 u5lemab 614 u3lemanb 617 u2lem1 735 3vth7 810 3vded21 817 mlaoml 833 sadm3 838 bi3 839 bi4 840 mlaconj4 844 comanblem1 870 go2n4 899 gomaex3lem8 921 oa6v4v 933 oalem1 1005 oadistd 1023 4oadist 1044 dp53lemb 1164 dp35lemb 1176 xdp53 1200 xxdp53 1203 xdp43lem 1205 xdp43 1207 3dp43 1208 testmod2 1215 testmod2expanded 1216 |
Copyright terms: Public domain | W3C validator |