Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > anabs | GIF version |
Description: Absorption law. (Contributed by NM, 11-Aug-1997.) |
Ref | Expression |
---|---|
anabs | (a ∩ (a ∪ b)) = a |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-a1 30 | . . . . 5 a = a⊥ ⊥ | |
2 | 1 | ax-r5 38 | . . . 4 (a ∪ b) = (a⊥ ⊥ ∪ b) |
3 | 2 | lan 77 | . . 3 (a ∩ (a ∪ b)) = (a ∩ (a⊥ ⊥ ∪ b)) |
4 | df-a 40 | . . 3 (a ∩ (a⊥ ⊥ ∪ b)) = (a⊥ ∪ (a⊥ ⊥ ∪ b)⊥ )⊥ | |
5 | 3, 4 | ax-r2 36 | . 2 (a ∩ (a ∪ b)) = (a⊥ ∪ (a⊥ ⊥ ∪ b)⊥ )⊥ |
6 | ax-a5 34 | . . 3 (a⊥ ∪ (a⊥ ⊥ ∪ b)⊥ ) = a⊥ | |
7 | 6 | con2 67 | . 2 (a⊥ ∪ (a⊥ ⊥ ∪ b)⊥ )⊥ = a |
8 | 5, 7 | ax-r2 36 | 1 (a ∩ (a ∪ b)) = a |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 |
This theorem is referenced by: leoa 123 mi 125 letr 137 leo 158 wa5c 201 wwcom3ii 215 ska7 235 nom15 312 nom22 315 nom23 316 nom25 318 k1-6 353 k1-7 354 2vwomlem 365 wcomlem 382 wdf-c2 384 wletr 396 wcom3ii 419 oml5a 450 comcom 453 com3ii 457 i3lem1 504 i3orlem3 554 ud3lem1a 566 ud3lem1b 567 ud3lem1d 569 ud3lem2 571 ud4lem1d 580 ud4lem2 582 ud5lem2 590 ud5lem3a 591 ud5lem3b 592 ud5lem3c 593 ud5lem3 594 u1lemana 605 u2lemab 611 u3lemab 612 u5lembi 725 u24lem 770 u3lem15 795 i2i1i1 800 3vded21 817 salem1 837 neg3antlem2 865 mhlemlem1 874 mhlem1 877 gomaex3lem2 915 oath1 1004 4oath1 1041 lem3.3.4 1053 modexp 1152 dp53lemb 1164 dp35lemb 1176 xdp53 1200 xxdp53 1203 xdp43lem 1205 xdp43 1207 3dp43 1208 |
Copyright terms: Public domain | W3C validator |