Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > ml2i | GIF version |
Description: Inference version of modular law. (Contributed by NM, 1-Apr-2012.) |
Ref | Expression |
---|---|
mli.1 | c ≤ a |
Ref | Expression |
---|---|
ml2i | (c ∪ (b ∩ a)) = ((c ∪ b) ∩ a) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ml 1123 | . 2 (c ∪ (b ∩ (c ∪ a))) = ((c ∪ b) ∩ (c ∪ a)) | |
2 | mli.1 | . . . . 5 c ≤ a | |
3 | 2 | df-le2 131 | . . . 4 (c ∪ a) = a |
4 | 3 | lan 77 | . . 3 (b ∩ (c ∪ a)) = (b ∩ a) |
5 | 4 | lor 70 | . 2 (c ∪ (b ∩ (c ∪ a))) = (c ∪ (b ∩ a)) |
6 | 3 | lan 77 | . 2 ((c ∪ b) ∩ (c ∪ a)) = ((c ∪ b) ∩ a) |
7 | 1, 5, 6 | 3tr2 64 | 1 (c ∪ (b ∩ a)) = ((c ∪ b) ∩ a) |
Colors of variables: term |
Syntax hints: = wb 1 ≤ wle 2 ∪ wo 6 ∩ wa 7 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-ml 1122 |
This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-le1 130 df-le2 131 |
This theorem is referenced by: mli 1126 l42modlem1 1149 dp53lemb 1164 dp35lemb 1176 dp41lemd 1186 dp32 1196 xdp41 1198 xdp53 1200 xxdp41 1201 xxdp53 1203 xdp45lem 1204 xdp43lem 1205 xdp45 1206 xdp43 1207 3dp43 1208 |
Copyright terms: Public domain | W3C validator |