Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > dp41lema | GIF version |
Description: Part of proof (4)=>(1) in Day/Pickering 1982. (Contributed by NM, 3-Apr-2012.) |
Ref | Expression |
---|---|
dp41lem.1 | c0 = ((a1 ∪ a2) ∩ (b1 ∪ b2)) |
dp41lem.2 | c1 = ((a0 ∪ a2) ∩ (b0 ∪ b2)) |
dp41lem.3 | c2 = ((a0 ∪ a1) ∩ (b0 ∪ b1)) |
dp41lem.4 | p = (((a0 ∪ b0) ∩ (a1 ∪ b1)) ∩ (a2 ∪ b2)) |
dp41lem.5 | p2 = ((a0 ∪ b0) ∩ (a1 ∪ b1)) |
dp41lem.6 | p2 ≤ (a2 ∪ b2) |
Ref | Expression |
---|---|
dp41lema | ((a0 ∪ b0) ∩ (a1 ∪ b1)) ≤ ((a0 ∪ b1) ∪ (c2 ∩ (c0 ∪ c1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dp41lem.5 | . . . . . . 7 p2 = ((a0 ∪ b0) ∩ (a1 ∪ b1)) | |
2 | 1 | cm 61 | . . . . . 6 ((a0 ∪ b0) ∩ (a1 ∪ b1)) = p2 |
3 | dp41lem.6 | . . . . . 6 p2 ≤ (a2 ∪ b2) | |
4 | 2, 3 | bltr 138 | . . . . 5 ((a0 ∪ b0) ∩ (a1 ∪ b1)) ≤ (a2 ∪ b2) |
5 | 4 | df2le2 136 | . . . 4 (((a0 ∪ b0) ∩ (a1 ∪ b1)) ∩ (a2 ∪ b2)) = ((a0 ∪ b0) ∩ (a1 ∪ b1)) |
6 | 5 | cm 61 | . . 3 ((a0 ∪ b0) ∩ (a1 ∪ b1)) = (((a0 ∪ b0) ∩ (a1 ∪ b1)) ∩ (a2 ∪ b2)) |
7 | dp41lem.4 | . . . 4 p = (((a0 ∪ b0) ∩ (a1 ∪ b1)) ∩ (a2 ∪ b2)) | |
8 | 7 | cm 61 | . . 3 (((a0 ∪ b0) ∩ (a1 ∪ b1)) ∩ (a2 ∪ b2)) = p |
9 | 6, 8 | tr 62 | . 2 ((a0 ∪ b0) ∩ (a1 ∪ b1)) = p |
10 | dp41lem.1 | . . 3 c0 = ((a1 ∪ a2) ∩ (b1 ∪ b2)) | |
11 | dp41lem.2 | . . 3 c1 = ((a0 ∪ a2) ∩ (b0 ∪ b2)) | |
12 | dp41lem.3 | . . 3 c2 = ((a0 ∪ a1) ∩ (b0 ∪ b1)) | |
13 | 10, 11, 12, 7 | dp34 1181 | . 2 p ≤ ((a0 ∪ b1) ∪ (c2 ∩ (c0 ∪ c1))) |
14 | 9, 13 | bltr 138 | 1 ((a0 ∪ b0) ∩ (a1 ∪ b1)) ≤ ((a0 ∪ b1) ∪ (c2 ∩ (c0 ∪ c1))) |
Colors of variables: term |
Syntax hints: = wb 1 ≤ wle 2 ∪ wo 6 ∩ wa 7 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-ml 1122 ax-arg 1153 |
This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-le1 130 df-le2 131 |
This theorem is referenced by: dp41lemc 1185 |
Copyright terms: Public domain | W3C validator |