Proof of Theorem dp41lemc
Step | Hyp | Ref
| Expression |
1 | | anass 76 |
. 2
((c2 ∩ ((a0 ∪ b0) ∪ b1)) ∩ ((a0 ∪ a1) ∪ b1)) = (c2 ∩ (((a0 ∪ b0) ∪ b1) ∩ ((a0 ∪ a1) ∪ b1))) |
2 | | dp41lem.1 |
. . . . 5
c0 = ((a1 ∪ a2) ∩ (b1 ∪ b2)) |
3 | | dp41lem.2 |
. . . . 5
c1 = ((a0 ∪ a2) ∩ (b0 ∪ b2)) |
4 | | dp41lem.3 |
. . . . 5
c2 = ((a0 ∪ a1) ∩ (b0 ∪ b1)) |
5 | | dp41lem.4 |
. . . . 5
p = (((a0 ∪ b0) ∩ (a1 ∪ b1)) ∩ (a2 ∪ b2)) |
6 | | dp41lem.5 |
. . . . 5
p2 = ((a0 ∪ b0) ∩ (a1 ∪ b1)) |
7 | | dp41lem.6 |
. . . . 5
p2 ≤ (a2 ∪ b2) |
8 | 2, 3, 4, 5, 6, 7 | dp41lemc0 1184 |
. . . 4
(((a0 ∪ b0) ∪ b1) ∩ ((a0 ∪ a1) ∪ b1)) = ((a0 ∪ b1) ∪ ((a0 ∪ b0) ∩ (a1 ∪ b1))) |
9 | | leo 158 |
. . . . 5
(a0 ∪ b1) ≤ ((a0 ∪ b1) ∪ (c2 ∩ (c0 ∪ c1))) |
10 | 2, 3, 4, 5, 6, 7 | dp41lema 1182 |
. . . . 5
((a0 ∪ b0) ∩ (a1 ∪ b1)) ≤ ((a0 ∪ b1) ∪ (c2 ∩ (c0 ∪ c1))) |
11 | 9, 10 | lel2or 170 |
. . . 4
((a0 ∪ b1) ∪ ((a0 ∪ b0) ∩ (a1 ∪ b1))) ≤ ((a0 ∪ b1) ∪ (c2 ∩ (c0 ∪ c1))) |
12 | 8, 11 | bltr 138 |
. . 3
(((a0 ∪ b0) ∪ b1) ∩ ((a0 ∪ a1) ∪ b1)) ≤ ((a0 ∪ b1) ∪ (c2 ∩ (c0 ∪ c1))) |
13 | 12 | lelan 167 |
. 2
(c2 ∩ (((a0 ∪ b0) ∪ b1) ∩ ((a0 ∪ a1) ∪ b1))) ≤ (c2 ∩ ((a0 ∪ b1) ∪ (c2 ∩ (c0 ∪ c1)))) |
14 | 1, 13 | bltr 138 |
1
((c2 ∩ ((a0 ∪ b0) ∪ b1)) ∩ ((a0 ∪ a1) ∪ b1)) ≤ (c2 ∩ ((a0 ∪ b1) ∪ (c2 ∩ (c0 ∪ c1)))) |