Proof of Theorem dp41lemb
Step | Hyp | Ref
| Expression |
1 | | dp41lem.3 |
. . . . . 6
c2 = ((a0 ∪ a1) ∩ (b0 ∪ b1)) |
2 | | ancom 74 |
. . . . . 6
((a0 ∪ a1) ∩ (b0 ∪ b1)) = ((b0 ∪ b1) ∩ (a0 ∪ a1)) |
3 | 1, 2 | tr 62 |
. . . . 5
c2 = ((b0 ∪ b1) ∩ (a0 ∪ a1)) |
4 | | leor 159 |
. . . . . . 7
b0 ≤ (a0 ∪ b0) |
5 | 4 | leror 152 |
. . . . . 6
(b0 ∪ b1) ≤ ((a0 ∪ b0) ∪ b1) |
6 | | leo 158 |
. . . . . 6
(a0 ∪ a1) ≤ ((a0 ∪ a1) ∪ b1) |
7 | 5, 6 | le2an 169 |
. . . . 5
((b0 ∪ b1) ∩ (a0 ∪ a1)) ≤ (((a0 ∪ b0) ∪ b1) ∩ ((a0 ∪ a1) ∪ b1)) |
8 | 3, 7 | bltr 138 |
. . . 4
c2 ≤ (((a0 ∪ b0) ∪ b1) ∩ ((a0 ∪ a1) ∪ b1)) |
9 | 8 | df2le2 136 |
. . 3
(c2 ∩ (((a0 ∪ b0) ∪ b1) ∩ ((a0 ∪ a1) ∪ b1))) = c2 |
10 | 9 | cm 61 |
. 2
c2 = (c2 ∩ (((a0 ∪ b0) ∪ b1) ∩ ((a0 ∪ a1) ∪ b1))) |
11 | | anass 76 |
. . 3
((c2 ∩ ((a0 ∪ b0) ∪ b1)) ∩ ((a0 ∪ a1) ∪ b1)) = (c2 ∩ (((a0 ∪ b0) ∪ b1) ∩ ((a0 ∪ a1) ∪ b1))) |
12 | 11 | cm 61 |
. 2
(c2 ∩ (((a0 ∪ b0) ∪ b1) ∩ ((a0 ∪ a1) ∪ b1))) = ((c2 ∩ ((a0 ∪ b0) ∪ b1)) ∩ ((a0 ∪ a1) ∪ b1)) |
13 | 10, 12 | tr 62 |
1
c2 = ((c2 ∩ ((a0 ∪ b0) ∪ b1)) ∩ ((a0 ∪ a1) ∪ b1)) |