Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > dp34 | GIF version |
Description: Part of theorem from Alan Day and Doug Pickering, "A note on the Arguesian lattice identity", Studia Sci. Math. Hungar. 19:303-305 (1982). (3)=>(4). (Contributed by NM, 3-Apr-2012.) |
Ref | Expression |
---|---|
dp34.1 | c0 = ((a1 ∪ a2) ∩ (b1 ∪ b2)) |
dp34.2 | c1 = ((a0 ∪ a2) ∩ (b0 ∪ b2)) |
dp34.3 | c2 = ((a0 ∪ a1) ∩ (b0 ∪ b1)) |
dp34.4 | p = (((a0 ∪ b0) ∩ (a1 ∪ b1)) ∩ (a2 ∪ b2)) |
Ref | Expression |
---|---|
dp34 | p ≤ ((a0 ∪ b1) ∪ (c2 ∩ (c0 ∪ c1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dp34.1 | . . . 4 c0 = ((a1 ∪ a2) ∩ (b1 ∪ b2)) | |
2 | dp34.2 | . . . 4 c1 = ((a0 ∪ a2) ∩ (b0 ∪ b2)) | |
3 | dp34.3 | . . . 4 c2 = ((a0 ∪ a1) ∩ (b0 ∪ b1)) | |
4 | dp34.4 | . . . 4 p = (((a0 ∪ b0) ∩ (a1 ∪ b1)) ∩ (a2 ∪ b2)) | |
5 | 1, 2, 3, 4 | dp53 1170 | . . 3 p ≤ (a0 ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1))))) |
6 | lear 161 | . . . 4 (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1)))) ≤ (b1 ∪ (c2 ∩ (c0 ∪ c1))) | |
7 | 6 | lelor 166 | . . 3 (a0 ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1))))) ≤ (a0 ∪ (b1 ∪ (c2 ∩ (c0 ∪ c1)))) |
8 | 5, 7 | letr 137 | . 2 p ≤ (a0 ∪ (b1 ∪ (c2 ∩ (c0 ∪ c1)))) |
9 | orass 75 | . . 3 ((a0 ∪ b1) ∪ (c2 ∩ (c0 ∪ c1))) = (a0 ∪ (b1 ∪ (c2 ∩ (c0 ∪ c1)))) | |
10 | 9 | cm 61 | . 2 (a0 ∪ (b1 ∪ (c2 ∩ (c0 ∪ c1)))) = ((a0 ∪ b1) ∪ (c2 ∩ (c0 ∪ c1))) |
11 | 8, 10 | lbtr 139 | 1 p ≤ ((a0 ∪ b1) ∪ (c2 ∩ (c0 ∪ c1))) |
Colors of variables: term |
Syntax hints: = wb 1 ≤ wle 2 ∪ wo 6 ∩ wa 7 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-ml 1122 ax-arg 1153 |
This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-le1 130 df-le2 131 |
This theorem is referenced by: dp41lema 1182 xdp41 1198 xxdp41 1201 xdp45lem 1204 xdp43lem 1205 xdp45 1206 xdp43 1207 3dp43 1208 |
Copyright terms: Public domain | W3C validator |