Proof of Theorem dp41lemg
Step | Hyp | Ref
| Expression |
1 | | or32 82 |
. . . 4
((a1 ∪ a2) ∪ (b1 ∩ (a0 ∪ a1))) = ((a1 ∪ (b1 ∩ (a0 ∪ a1))) ∪ a2) |
2 | | ml3 1130 |
. . . . . 6
(a1 ∪ (b1 ∩ (a0 ∪ a1))) = (a1 ∪ (a0 ∩ (b1 ∪ a1))) |
3 | | orcom 73 |
. . . . . . . 8
(b1 ∪ a1) = (a1 ∪ b1) |
4 | 3 | lan 77 |
. . . . . . 7
(a0 ∩ (b1 ∪ a1)) = (a0 ∩ (a1 ∪ b1)) |
5 | 4 | lor 70 |
. . . . . 6
(a1 ∪ (a0 ∩ (b1 ∪ a1))) = (a1 ∪ (a0 ∩ (a1 ∪ b1))) |
6 | 2, 5 | tr 62 |
. . . . 5
(a1 ∪ (b1 ∩ (a0 ∪ a1))) = (a1 ∪ (a0 ∩ (a1 ∪ b1))) |
7 | 6 | ror 71 |
. . . 4
((a1 ∪ (b1 ∩ (a0 ∪ a1))) ∪ a2) = ((a1 ∪ (a0 ∩ (a1 ∪ b1))) ∪ a2) |
8 | | or32 82 |
. . . 4
((a1 ∪ (a0 ∩ (a1 ∪ b1))) ∪ a2) = ((a1 ∪ a2) ∪ (a0 ∩ (a1 ∪ b1))) |
9 | 1, 7, 8 | 3tr 65 |
. . 3
((a1 ∪ a2) ∪ (b1 ∩ (a0 ∪ a1))) = ((a1 ∪ a2) ∪ (a0 ∩ (a1 ∪ b1))) |
10 | 9 | lan 77 |
. 2
((b1 ∪ b2) ∩ ((a1 ∪ a2) ∪ (b1 ∩ (a0 ∪ a1)))) = ((b1 ∪ b2) ∩ ((a1 ∪ a2) ∪ (a0 ∩ (a1 ∪ b1)))) |
11 | | or32 82 |
. . . 4
((b0 ∪ b2) ∪ (a0 ∩ (b0 ∪ b1))) = ((b0 ∪ (a0 ∩ (b0 ∪ b1))) ∪ b2) |
12 | | orcom 73 |
. . . . . . . 8
(b0 ∪ b1) = (b1 ∪ b0) |
13 | 12 | lan 77 |
. . . . . . 7
(a0 ∩ (b0 ∪ b1)) = (a0 ∩ (b1 ∪ b0)) |
14 | 13 | lor 70 |
. . . . . 6
(b0 ∪ (a0 ∩ (b0 ∪ b1))) = (b0 ∪ (a0 ∩ (b1 ∪ b0))) |
15 | | ml3 1130 |
. . . . . 6
(b0 ∪ (a0 ∩ (b1 ∪ b0))) = (b0 ∪ (b1 ∩ (a0 ∪ b0))) |
16 | 14, 15 | tr 62 |
. . . . 5
(b0 ∪ (a0 ∩ (b0 ∪ b1))) = (b0 ∪ (b1 ∩ (a0 ∪ b0))) |
17 | 16 | ror 71 |
. . . 4
((b0 ∪ (a0 ∩ (b0 ∪ b1))) ∪ b2) = ((b0 ∪ (b1 ∩ (a0 ∪ b0))) ∪ b2) |
18 | | or32 82 |
. . . 4
((b0 ∪ (b1 ∩ (a0 ∪ b0))) ∪ b2) = ((b0 ∪ b2) ∪ (b1 ∩ (a0 ∪ b0))) |
19 | 11, 17, 18 | 3tr 65 |
. . 3
((b0 ∪ b2) ∪ (a0 ∩ (b0 ∪ b1))) = ((b0 ∪ b2) ∪ (b1 ∩ (a0 ∪ b0))) |
20 | 19 | lan 77 |
. 2
((a0 ∪ a2) ∩ ((b0 ∪ b2) ∪ (a0 ∩ (b0 ∪ b1)))) = ((a0 ∪ a2) ∩ ((b0 ∪ b2) ∪ (b1 ∩ (a0 ∪ b0)))) |
21 | 10, 20 | 2or 72 |
1
(((b1 ∪ b2) ∩ ((a1 ∪ a2) ∪ (b1 ∩ (a0 ∪ a1)))) ∪ ((a0 ∪ a2) ∩ ((b0 ∪ b2) ∪ (a0 ∩ (b0 ∪ b1))))) = (((b1 ∪ b2) ∩ ((a1 ∪ a2) ∪ (a0 ∩ (a1 ∪ b1)))) ∪ ((a0 ∪ a2) ∩ ((b0 ∪ b2) ∪ (b1 ∩ (a0 ∪ b0))))) |