Proof of Theorem dp41lemf
Step | Hyp | Ref
| Expression |
1 | | orcom 73 |
. . 3
((a0 ∩ (b0 ∪ b1)) ∪ (b1 ∩ (a0 ∪ a1))) = ((b1 ∩ (a0 ∪ a1)) ∪ (a0 ∩ (b0 ∪ b1))) |
2 | 1 | lor 70 |
. 2
((c0 ∪ c1) ∪ ((a0 ∩ (b0 ∪ b1)) ∪ (b1 ∩ (a0 ∪ a1)))) = ((c0 ∪ c1) ∪ ((b1 ∩ (a0 ∪ a1)) ∪ (a0 ∩ (b0 ∪ b1)))) |
3 | | or4 84 |
. . 3
((c0 ∪ c1) ∪ ((b1 ∩ (a0 ∪ a1)) ∪ (a0 ∩ (b0 ∪ b1)))) = ((c0 ∪ (b1 ∩ (a0 ∪ a1))) ∪ (c1 ∪ (a0 ∩ (b0 ∪ b1)))) |
4 | | dp41lem.1 |
. . . . . 6
c0 = ((a1 ∪ a2) ∩ (b1 ∪ b2)) |
5 | | ancom 74 |
. . . . . 6
((a1 ∪ a2) ∩ (b1 ∪ b2)) = ((b1 ∪ b2) ∩ (a1 ∪ a2)) |
6 | 4, 5 | tr 62 |
. . . . 5
c0 = ((b1 ∪ b2) ∩ (a1 ∪ a2)) |
7 | 6 | ror 71 |
. . . 4
(c0 ∪ (b1 ∩ (a0 ∪ a1))) = (((b1 ∪ b2) ∩ (a1 ∪ a2)) ∪ (b1 ∩ (a0 ∪ a1))) |
8 | | dp41lem.2 |
. . . . 5
c1 = ((a0 ∪ a2) ∩ (b0 ∪ b2)) |
9 | 8 | ror 71 |
. . . 4
(c1 ∪ (a0 ∩ (b0 ∪ b1))) = (((a0 ∪ a2) ∩ (b0 ∪ b2)) ∪ (a0 ∩ (b0 ∪ b1))) |
10 | 7, 9 | 2or 72 |
. . 3
((c0 ∪ (b1 ∩ (a0 ∪ a1))) ∪ (c1 ∪ (a0 ∩ (b0 ∪ b1)))) = ((((b1 ∪ b2) ∩ (a1 ∪ a2)) ∪ (b1 ∩ (a0 ∪ a1))) ∪ (((a0 ∪ a2) ∩ (b0 ∪ b2)) ∪ (a0 ∩ (b0 ∪ b1)))) |
11 | 3, 10 | tr 62 |
. 2
((c0 ∪ c1) ∪ ((b1 ∩ (a0 ∪ a1)) ∪ (a0 ∩ (b0 ∪ b1)))) = ((((b1 ∪ b2) ∩ (a1 ∪ a2)) ∪ (b1 ∩ (a0 ∪ a1))) ∪ (((a0 ∪ a2) ∩ (b0 ∪ b2)) ∪ (a0 ∩ (b0 ∪ b1)))) |
12 | | leao1 162 |
. . . 4
(b1 ∩ (a0 ∪ a1)) ≤ (b1 ∪ b2) |
13 | 12 | mli 1126 |
. . 3
(((b1 ∪ b2) ∩ (a1 ∪ a2)) ∪ (b1 ∩ (a0 ∪ a1))) = ((b1 ∪ b2) ∩ ((a1 ∪ a2) ∪ (b1 ∩ (a0 ∪ a1)))) |
14 | | leao1 162 |
. . . 4
(a0 ∩ (b0 ∪ b1)) ≤ (a0 ∪ a2) |
15 | 14 | mli 1126 |
. . 3
(((a0 ∪ a2) ∩ (b0 ∪ b2)) ∪ (a0 ∩ (b0 ∪ b1))) = ((a0 ∪ a2) ∩ ((b0 ∪ b2) ∪ (a0 ∩ (b0 ∪ b1)))) |
16 | 13, 15 | 2or 72 |
. 2
((((b1 ∪ b2) ∩ (a1 ∪ a2)) ∪ (b1 ∩ (a0 ∪ a1))) ∪ (((a0 ∪ a2) ∩ (b0 ∪ b2)) ∪ (a0 ∩ (b0 ∪ b1)))) = (((b1 ∪ b2) ∩ ((a1 ∪ a2) ∪ (b1 ∩ (a0 ∪ a1)))) ∪ ((a0 ∪ a2) ∩ ((b0 ∪ b2) ∪ (a0 ∩ (b0 ∪ b1))))) |
17 | 2, 11, 16 | 3tr 65 |
1
((c0 ∪ c1) ∪ ((a0 ∩ (b0 ∪ b1)) ∪ (b1 ∩ (a0 ∪ a1)))) = (((b1 ∪ b2) ∩ ((a1 ∪ a2) ∪ (b1 ∩ (a0 ∪ a1)))) ∪ ((a0 ∪ a2) ∩ ((b0 ∪ b2) ∪ (a0 ∩ (b0 ∪ b1))))) |