Proof of Theorem dp41leml
Step | Hyp | Ref
| Expression |
1 | | or4 84 |
. 2
((c0 ∪ (b2 ∩ (a0 ∪ a2))) ∪ (c1 ∪ (a2 ∩ (b1 ∪ b2)))) = ((c0 ∪ c1) ∪ ((b2 ∩ (a0 ∪ a2)) ∪ (a2 ∩ (b1 ∪ b2)))) |
2 | | orcom 73 |
. 2
((c0 ∪ c1) ∪ ((b2 ∩ (a0 ∪ a2)) ∪ (a2 ∩ (b1 ∪ b2)))) = (((b2 ∩ (a0 ∪ a2)) ∪ (a2 ∩ (b1 ∪ b2))) ∪ (c0 ∪ c1)) |
3 | | ancom 74 |
. . . . . 6
(b2 ∩ (a0 ∪ a2)) = ((a0 ∪ a2) ∩ b2) |
4 | | leor 159 |
. . . . . . 7
b2 ≤ (b0 ∪ b2) |
5 | 4 | lelan 167 |
. . . . . 6
((a0 ∪ a2) ∩ b2) ≤ ((a0 ∪ a2) ∩ (b0 ∪ b2)) |
6 | 3, 5 | bltr 138 |
. . . . 5
(b2 ∩ (a0 ∪ a2)) ≤ ((a0 ∪ a2) ∩ (b0 ∪ b2)) |
7 | | leor 159 |
. . . . . 6
a2 ≤ (a1 ∪ a2) |
8 | 7 | leran 153 |
. . . . 5
(a2 ∩ (b1 ∪ b2)) ≤ ((a1 ∪ a2) ∩ (b1 ∪ b2)) |
9 | 6, 8 | le2or 168 |
. . . 4
((b2 ∩ (a0 ∪ a2)) ∪ (a2 ∩ (b1 ∪ b2))) ≤ (((a0 ∪ a2) ∩ (b0 ∪ b2)) ∪ ((a1 ∪ a2) ∩ (b1 ∪ b2))) |
10 | | dp41lem.2 |
. . . . . . 7
c1 = ((a0 ∪ a2) ∩ (b0 ∪ b2)) |
11 | | dp41lem.1 |
. . . . . . 7
c0 = ((a1 ∪ a2) ∩ (b1 ∪ b2)) |
12 | 10, 11 | 2or 72 |
. . . . . 6
(c1 ∪ c0) = (((a0 ∪ a2) ∩ (b0 ∪ b2)) ∪ ((a1 ∪ a2) ∩ (b1 ∪ b2))) |
13 | 12 | cm 61 |
. . . . 5
(((a0 ∪ a2) ∩ (b0 ∪ b2)) ∪ ((a1 ∪ a2) ∩ (b1 ∪ b2))) = (c1 ∪ c0) |
14 | | orcom 73 |
. . . . 5
(c1 ∪ c0) = (c0 ∪ c1) |
15 | 13, 14 | tr 62 |
. . . 4
(((a0 ∪ a2) ∩ (b0 ∪ b2)) ∪ ((a1 ∪ a2) ∩ (b1 ∪ b2))) = (c0 ∪ c1) |
16 | 9, 15 | lbtr 139 |
. . 3
((b2 ∩ (a0 ∪ a2)) ∪ (a2 ∩ (b1 ∪ b2))) ≤ (c0 ∪ c1) |
17 | 16 | df-le2 131 |
. 2
(((b2 ∩ (a0 ∪ a2)) ∪ (a2 ∩ (b1 ∪ b2))) ∪ (c0 ∪ c1)) = (c0 ∪ c1) |
18 | 1, 2, 17 | 3tr 65 |
1
((c0 ∪ (b2 ∩ (a0 ∪ a2))) ∪ (c1 ∪ (a2 ∩ (b1 ∪ b2)))) = (c0 ∪ c1) |