Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > mldual2i | GIF version |
Description: Inference version of dual of modular law. (Contributed by NM, 1-Apr-2012.) |
Ref | Expression |
---|---|
mlduali.1 | a ≤ c |
Ref | Expression |
---|---|
mldual2i | (c ∩ (b ∪ a)) = ((c ∩ b) ∪ a) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mldual 1124 | . 2 (c ∩ (b ∪ (c ∩ a))) = ((c ∩ b) ∪ (c ∩ a)) | |
2 | lear 161 | . . . . 5 (c ∩ a) ≤ a | |
3 | mlduali.1 | . . . . . 6 a ≤ c | |
4 | leid 148 | . . . . . 6 a ≤ a | |
5 | 3, 4 | ler2an 173 | . . . . 5 a ≤ (c ∩ a) |
6 | 2, 5 | lebi 145 | . . . 4 (c ∩ a) = a |
7 | 6 | lor 70 | . . 3 (b ∪ (c ∩ a)) = (b ∪ a) |
8 | 7 | lan 77 | . 2 (c ∩ (b ∪ (c ∩ a))) = (c ∩ (b ∪ a)) |
9 | 6 | lor 70 | . 2 ((c ∩ b) ∪ (c ∩ a)) = ((c ∩ b) ∪ a) |
10 | 1, 8, 9 | 3tr2 64 | 1 (c ∩ (b ∪ a)) = ((c ∩ b) ∪ a) |
Colors of variables: term |
Syntax hints: = wb 1 ≤ wle 2 ∪ wo 6 ∩ wa 7 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-ml 1122 |
This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-le1 130 df-le2 131 |
This theorem is referenced by: mlduali 1128 dp15lemf 1159 dp53lema 1163 dp53leme 1167 dp53lemf 1168 dp35lemd 1174 dp35lem0 1179 dp41lemc0 1184 dp41leme 1187 dp41lemk 1192 dp32 1196 xdp41 1198 xdp15 1199 xdp53 1200 xxdp41 1201 xxdp15 1202 xxdp53 1203 xdp45lem 1204 xdp43lem 1205 xdp45 1206 xdp43 1207 3dp43 1208 testmod2 1215 testmod2expanded 1216 |
Copyright terms: Public domain | W3C validator |