QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  mldual2i GIF version

Theorem mldual2i 1127
Description: Inference version of dual of modular law. (Contributed by NM, 1-Apr-2012.)
Hypothesis
Ref Expression
mlduali.1 ac
Assertion
Ref Expression
mldual2i (c ∩ (ba)) = ((cb) ∪ a)

Proof of Theorem mldual2i
StepHypRef Expression
1 mldual 1124 . 2 (c ∩ (b ∪ (ca))) = ((cb) ∪ (ca))
2 lear 161 . . . . 5 (ca) ≤ a
3 mlduali.1 . . . . . 6 ac
4 leid 148 . . . . . 6 aa
53, 4ler2an 173 . . . . 5 a ≤ (ca)
62, 5lebi 145 . . . 4 (ca) = a
76lor 70 . . 3 (b ∪ (ca)) = (ba)
87lan 77 . 2 (c ∩ (b ∪ (ca))) = (c ∩ (ba))
96lor 70 . 2 ((cb) ∪ (ca)) = ((cb) ∪ a)
101, 8, 93tr2 64 1 (c ∩ (ba)) = ((cb) ∪ a)
Colors of variables: term
Syntax hints:   = wb 1  wle 2  wo 6  wa 7
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38  ax-ml 1122
This theorem depends on definitions:  df-a 40  df-t 41  df-f 42  df-le1 130  df-le2 131
This theorem is referenced by:  mlduali  1128  dp15lemf  1159  dp53lema  1163  dp53leme  1167  dp53lemf  1168  dp35lemd  1174  dp35lem0  1179  dp41lemc0  1184  dp41leme  1187  dp41lemk  1192  dp32  1196  xdp41  1198  xdp15  1199  xdp53  1200  xxdp41  1201  xxdp15  1202  xxdp53  1203  xdp45lem  1204  xdp43lem  1205  xdp45  1206  xdp43  1207  3dp43  1208  testmod2  1215  testmod2expanded  1216
  Copyright terms: Public domain W3C validator