Proof of Theorem elimcons2
Step | Hyp | Ref
| Expression |
1 | | elimcons2.1 |
. 2
(a →1 c) = (b
→1 c) |
2 | | elimcons2.2 |
. . 3
(a ∩ (c ∩ (b
→1 c))) ≤ (b ∪ (c⊥ ∪ (a →1 c)⊥ )) |
3 | 1 | ax-r1 35 |
. . . . . . 7
(b →1 c) = (a
→1 c) |
4 | | df-i1 44 |
. . . . . . 7
(a →1 c) = (a⊥ ∪ (a ∩ c)) |
5 | 3, 4 | ax-r2 36 |
. . . . . 6
(b →1 c) = (a⊥ ∪ (a ∩ c)) |
6 | 5 | lan 77 |
. . . . 5
(c ∩ (b →1 c)) = (c ∩
(a⊥ ∪ (a ∩ c))) |
7 | 6 | lan 77 |
. . . 4
(a ∩ (c ∩ (b
→1 c))) = (a ∩ (c ∩
(a⊥ ∪ (a ∩ c)))) |
8 | | anass 76 |
. . . . 5
((a ∩ c) ∩ (a⊥ ∪ (a ∩ c))) =
(a ∩ (c ∩ (a⊥ ∪ (a ∩ c)))) |
9 | 8 | ax-r1 35 |
. . . 4
(a ∩ (c ∩ (a⊥ ∪ (a ∩ c)))) =
((a ∩ c) ∩ (a⊥ ∪ (a ∩ c))) |
10 | | leor 159 |
. . . . 5
(a ∩ c) ≤ (a⊥ ∪ (a ∩ c)) |
11 | 10 | df2le2 136 |
. . . 4
((a ∩ c) ∩ (a⊥ ∪ (a ∩ c))) =
(a ∩ c) |
12 | 7, 9, 11 | 3tr 65 |
. . 3
(a ∩ (c ∩ (b
→1 c))) = (a ∩ c) |
13 | 1 | ax-r4 37 |
. . . . . . . 8
(a →1 c)⊥ = (b →1 c)⊥ |
14 | | ud1lem0c 277 |
. . . . . . . 8
(b →1 c)⊥ = (b ∩ (b⊥ ∪ c⊥ )) |
15 | 13, 14 | ax-r2 36 |
. . . . . . 7
(a →1 c)⊥ = (b ∩ (b⊥ ∪ c⊥ )) |
16 | 15 | lor 70 |
. . . . . 6
(c⊥ ∪ (a →1 c)⊥ ) = (c⊥ ∪ (b ∩ (b⊥ ∪ c⊥ ))) |
17 | | ax-a2 31 |
. . . . . 6
(c⊥ ∪ (b ∩ (b⊥ ∪ c⊥ ))) = ((b ∩ (b⊥ ∪ c⊥ )) ∪ c⊥ ) |
18 | 16, 17 | ax-r2 36 |
. . . . 5
(c⊥ ∪ (a →1 c)⊥ ) = ((b ∩ (b⊥ ∪ c⊥ )) ∪ c⊥ ) |
19 | 18 | lor 70 |
. . . 4
(b ∪ (c⊥ ∪ (a →1 c)⊥ )) = (b ∪ ((b
∩ (b⊥ ∪ c⊥ )) ∪ c⊥ )) |
20 | | ax-a3 32 |
. . . . 5
((b ∪ (b ∩ (b⊥ ∪ c⊥ ))) ∪ c⊥ ) = (b ∪ ((b
∩ (b⊥ ∪ c⊥ )) ∪ c⊥ )) |
21 | 20 | ax-r1 35 |
. . . 4
(b ∪ ((b ∩ (b⊥ ∪ c⊥ )) ∪ c⊥ )) = ((b ∪ (b ∩
(b⊥ ∪ c⊥ ))) ∪ c⊥ ) |
22 | | ax-a2 31 |
. . . . . 6
(b ∪ (b ∩ (b⊥ ∪ c⊥ ))) = ((b ∩ (b⊥ ∪ c⊥ )) ∪ b) |
23 | | lea 160 |
. . . . . . 7
(b ∩ (b⊥ ∪ c⊥ )) ≤ b |
24 | 23 | df-le2 131 |
. . . . . 6
((b ∩ (b⊥ ∪ c⊥ )) ∪ b) = b |
25 | 22, 24 | ax-r2 36 |
. . . . 5
(b ∪ (b ∩ (b⊥ ∪ c⊥ ))) = b |
26 | 25 | ax-r5 38 |
. . . 4
((b ∪ (b ∩ (b⊥ ∪ c⊥ ))) ∪ c⊥ ) = (b ∪ c⊥ ) |
27 | 19, 21, 26 | 3tr 65 |
. . 3
(b ∪ (c⊥ ∪ (a →1 c)⊥ )) = (b ∪ c⊥ ) |
28 | 2, 12, 27 | le3tr2 141 |
. 2
(a ∩ c) ≤ (b ∪
c⊥ ) |
29 | 1, 28 | elimcons 868 |
1
a ≤ b |