Proof of Theorem comanblem1
Step | Hyp | Ref
| Expression |
1 | | an4 86 |
. 2
(((a →1 c) ∩ (c
→1 a)) ∩ ((b →1 c) ∩ (c
→1 b))) = (((a →1 c) ∩ (b
→1 c)) ∩ ((c →1 a) ∩ (c
→1 b))) |
2 | | u1lembi 720 |
. . 3
((a →1 c) ∩ (c
→1 a)) = (a ≡ c) |
3 | | u1lembi 720 |
. . 3
((b →1 c) ∩ (c
→1 b)) = (b ≡ c) |
4 | 2, 3 | 2an 79 |
. 2
(((a →1 c) ∩ (c
→1 a)) ∩ ((b →1 c) ∩ (c
→1 b))) = ((a ≡ c)
∩ (b ≡ c)) |
5 | | an32 83 |
. . 3
(((a →1 c) ∩ (b
→1 c)) ∩ ((c →1 a) ∩ (c
→1 b))) = (((a →1 c) ∩ ((c
→1 a) ∩ (c →1 b))) ∩ (b
→1 c)) |
6 | | df-i1 44 |
. . . . . . . 8
(c →1 a) = (c⊥ ∪ (c ∩ a)) |
7 | | df-i1 44 |
. . . . . . . 8
(c →1 b) = (c⊥ ∪ (c ∩ b)) |
8 | 6, 7 | 2an 79 |
. . . . . . 7
((c →1 a) ∩ (c
→1 b)) = ((c⊥ ∪ (c ∩ a))
∩ (c⊥ ∪ (c ∩ b))) |
9 | | comanr1 464 |
. . . . . . . . . 10
c C (c ∩ a) |
10 | 9 | comcom3 454 |
. . . . . . . . 9
c⊥ C
(c ∩ a) |
11 | | comanr1 464 |
. . . . . . . . . 10
c C (c ∩ b) |
12 | 11 | comcom3 454 |
. . . . . . . . 9
c⊥ C
(c ∩ b) |
13 | 10, 12 | fh3 471 |
. . . . . . . 8
(c⊥ ∪
((c ∩ a) ∩ (c
∩ b))) = ((c⊥ ∪ (c ∩ a))
∩ (c⊥ ∪ (c ∩ b))) |
14 | 13 | ax-r1 35 |
. . . . . . 7
((c⊥ ∪
(c ∩ a)) ∩ (c⊥ ∪ (c ∩ b))) =
(c⊥ ∪ ((c ∩ a) ∩
(c ∩ b))) |
15 | 8, 14 | ax-r2 36 |
. . . . . 6
((c →1 a) ∩ (c
→1 b)) = (c⊥ ∪ ((c ∩ a) ∩
(c ∩ b))) |
16 | 15 | lan 77 |
. . . . 5
((a →1 c) ∩ ((c
→1 a) ∩ (c →1 b))) = ((a
→1 c) ∩ (c⊥ ∪ ((c ∩ a) ∩
(c ∩ b)))) |
17 | | df-i1 44 |
. . . . . 6
(a →1 c) = (a⊥ ∪ (a ∩ c)) |
18 | 17 | ran 78 |
. . . . 5
((a →1 c) ∩ (c⊥ ∪ ((c ∩ a) ∩
(c ∩ b)))) = ((a⊥ ∪ (a ∩ c))
∩ (c⊥ ∪ ((c ∩ a) ∩
(c ∩ b)))) |
19 | | lea 160 |
. . . . . . . . 9
((c ∩ a) ∩ (c
∩ b)) ≤ (c ∩ a) |
20 | | ancom 74 |
. . . . . . . . . 10
(c ∩ a) = (a ∩
c) |
21 | | leor 159 |
. . . . . . . . . 10
(a ∩ c) ≤ (a⊥ ∪ (a ∩ c)) |
22 | 20, 21 | bltr 138 |
. . . . . . . . 9
(c ∩ a) ≤ (a⊥ ∪ (a ∩ c)) |
23 | 19, 22 | letr 137 |
. . . . . . . 8
((c ∩ a) ∩ (c
∩ b)) ≤ (a⊥ ∪ (a ∩ c)) |
24 | 23 | lecom 180 |
. . . . . . 7
((c ∩ a) ∩ (c
∩ b)) C (a⊥ ∪ (a ∩ c)) |
25 | 10, 12 | com2an 484 |
. . . . . . . 8
c⊥ C
((c ∩ a) ∩ (c
∩ b)) |
26 | 25 | comcom 453 |
. . . . . . 7
((c ∩ a) ∩ (c
∩ b)) C c⊥ |
27 | 24, 26 | fh2c 477 |
. . . . . 6
((a⊥ ∪
(a ∩ c)) ∩ (c⊥ ∪ ((c ∩ a) ∩
(c ∩ b)))) = (((a⊥ ∪ (a ∩ c))
∩ c⊥ ) ∪
((a⊥ ∪ (a ∩ c))
∩ ((c ∩ a) ∩ (c
∩ b)))) |
28 | | coman2 186 |
. . . . . . . . . 10
(a ∩ c) C c |
29 | 28 | comcom2 183 |
. . . . . . . . 9
(a ∩ c) C c⊥ |
30 | | coman1 185 |
. . . . . . . . . 10
(a ∩ c) C a |
31 | 30 | comcom2 183 |
. . . . . . . . 9
(a ∩ c) C a⊥ |
32 | 29, 31 | fh2rc 480 |
. . . . . . . 8
((a⊥ ∪
(a ∩ c)) ∩ c⊥ ) = ((a⊥ ∩ c⊥ ) ∪ ((a ∩ c) ∩
c⊥ )) |
33 | | anass 76 |
. . . . . . . . . 10
((a ∩ c) ∩ c⊥ ) = (a ∩ (c ∩
c⊥ )) |
34 | | dff 101 |
. . . . . . . . . . . 12
0 = (c ∩ c⊥ ) |
35 | 34 | lan 77 |
. . . . . . . . . . 11
(a ∩ 0) = (a ∩ (c ∩
c⊥ )) |
36 | 35 | ax-r1 35 |
. . . . . . . . . 10
(a ∩ (c ∩ c⊥ )) = (a ∩ 0) |
37 | | an0 108 |
. . . . . . . . . 10
(a ∩ 0) = 0 |
38 | 33, 36, 37 | 3tr 65 |
. . . . . . . . 9
((a ∩ c) ∩ c⊥ ) = 0 |
39 | 38 | lor 70 |
. . . . . . . 8
((a⊥ ∩ c⊥ ) ∪ ((a ∩ c) ∩
c⊥ )) = ((a⊥ ∩ c⊥ ) ∪ 0) |
40 | | or0 102 |
. . . . . . . . 9
((a⊥ ∩ c⊥ ) ∪ 0) = (a⊥ ∩ c⊥ ) |
41 | | anor3 90 |
. . . . . . . . 9
(a⊥ ∩ c⊥ ) = (a ∪ c)⊥ |
42 | 40, 41 | ax-r2 36 |
. . . . . . . 8
((a⊥ ∩ c⊥ ) ∪ 0) = (a ∪ c)⊥ |
43 | 32, 39, 42 | 3tr 65 |
. . . . . . 7
((a⊥ ∪
(a ∩ c)) ∩ c⊥ ) = (a ∪ c)⊥ |
44 | | ancom 74 |
. . . . . . . . . 10
(a ∩ c) = (c ∩
a) |
45 | | comanr1 464 |
. . . . . . . . . 10
(c ∩ a) C ((c
∩ a) ∩ (c ∩ b)) |
46 | 44, 45 | bctr 181 |
. . . . . . . . 9
(a ∩ c) C ((c
∩ a) ∩ (c ∩ b)) |
47 | 46, 31 | fh2rc 480 |
. . . . . . . 8
((a⊥ ∪
(a ∩ c)) ∩ ((c
∩ a) ∩ (c ∩ b))) =
((a⊥ ∩ ((c ∩ a) ∩
(c ∩ b))) ∪ ((a
∩ c) ∩ ((c ∩ a) ∩
(c ∩ b)))) |
48 | | anandi 114 |
. . . . . . . . . . . 12
(c ∩ (a ∩ b)) =
((c ∩ a) ∩ (c
∩ b)) |
49 | 48 | ax-r1 35 |
. . . . . . . . . . 11
((c ∩ a) ∩ (c
∩ b)) = (c ∩ (a ∩
b)) |
50 | | ancom 74 |
. . . . . . . . . . 11
(c ∩ (a ∩ b)) =
((a ∩ b) ∩ c) |
51 | 49, 50 | ax-r2 36 |
. . . . . . . . . 10
((c ∩ a) ∩ (c
∩ b)) = ((a ∩ b) ∩
c) |
52 | 51 | lan 77 |
. . . . . . . . 9
(a⊥ ∩
((c ∩ a) ∩ (c
∩ b))) = (a⊥ ∩ ((a ∩ b) ∩
c)) |
53 | 51 | lan 77 |
. . . . . . . . . 10
((a ∩ c) ∩ ((c
∩ a) ∩ (c ∩ b))) =
((a ∩ c) ∩ ((a
∩ b) ∩ c)) |
54 | | ancom 74 |
. . . . . . . . . 10
((a ∩ c) ∩ ((a
∩ b) ∩ c)) = (((a ∩
b) ∩ c) ∩ (a
∩ c)) |
55 | | lea 160 |
. . . . . . . . . . . 12
(a ∩ b) ≤ a |
56 | 55 | leran 153 |
. . . . . . . . . . 11
((a ∩ b) ∩ c) ≤
(a ∩ c) |
57 | 56 | df2le2 136 |
. . . . . . . . . 10
(((a ∩ b) ∩ c)
∩ (a ∩ c)) = ((a ∩
b) ∩ c) |
58 | 53, 54, 57 | 3tr 65 |
. . . . . . . . 9
((a ∩ c) ∩ ((c
∩ a) ∩ (c ∩ b))) =
((a ∩ b) ∩ c) |
59 | 52, 58 | 2or 72 |
. . . . . . . 8
((a⊥ ∩
((c ∩ a) ∩ (c
∩ b))) ∪ ((a ∩ c) ∩
((c ∩ a) ∩ (c
∩ b)))) = ((a⊥ ∩ ((a ∩ b) ∩
c)) ∪ ((a ∩ b) ∩
c)) |
60 | | lear 161 |
. . . . . . . . 9
(a⊥ ∩
((a ∩ b) ∩ c))
≤ ((a ∩ b) ∩ c) |
61 | 60 | df-le2 131 |
. . . . . . . 8
((a⊥ ∩
((a ∩ b) ∩ c))
∪ ((a ∩ b) ∩ c)) =
((a ∩ b) ∩ c) |
62 | 47, 59, 61 | 3tr 65 |
. . . . . . 7
((a⊥ ∪
(a ∩ c)) ∩ ((c
∩ a) ∩ (c ∩ b))) =
((a ∩ b) ∩ c) |
63 | 43, 62 | 2or 72 |
. . . . . 6
(((a⊥ ∪
(a ∩ c)) ∩ c⊥ ) ∪ ((a⊥ ∪ (a ∩ c))
∩ ((c ∩ a) ∩ (c
∩ b)))) = ((a ∪ c)⊥ ∪ ((a ∩ b) ∩
c)) |
64 | 27, 63 | ax-r2 36 |
. . . . 5
((a⊥ ∪
(a ∩ c)) ∩ (c⊥ ∪ ((c ∩ a) ∩
(c ∩ b)))) = ((a
∪ c)⊥ ∪ ((a ∩ b) ∩
c)) |
65 | 16, 18, 64 | 3tr 65 |
. . . 4
((a →1 c) ∩ ((c
→1 a) ∩ (c →1 b))) = ((a ∪
c)⊥ ∪ ((a ∩ b) ∩
c)) |
66 | 65 | ran 78 |
. . 3
(((a →1 c) ∩ ((c
→1 a) ∩ (c →1 b))) ∩ (b
→1 c)) = (((a ∪ c)⊥ ∪ ((a ∩ b) ∩
c)) ∩ (b →1 c)) |
67 | 5, 66 | ax-r2 36 |
. 2
(((a →1 c) ∩ (b
→1 c)) ∩ ((c →1 a) ∩ (c
→1 b))) = (((a ∪ c)⊥ ∪ ((a ∩ b) ∩
c)) ∩ (b →1 c)) |
68 | 1, 4, 67 | 3tr2 64 |
1
((a ≡ c) ∩ (b
≡ c)) = (((a ∪ c)⊥ ∪ ((a ∩ b) ∩
c)) ∩ (b →1 c)) |