Step | Hyp | Ref
| Expression |
1 | | df-t 41 |
. . . . . . . 8
1 = (a ∪ a⊥ ) |
2 | | elimcons.1 |
. . . . . . . . . 10
(a →1 c) = (b
→1 c) |
3 | | elimcons.2 |
. . . . . . . . . 10
(a ∩ c) ≤ (b ∪
c⊥ ) |
4 | 2, 3 | elimconslem 867 |
. . . . . . . . 9
a ≤ (b ∪ c⊥ ) |
5 | 4 | leror 152 |
. . . . . . . 8
(a ∪ a⊥ ) ≤ ((b ∪ c⊥ ) ∪ a⊥ ) |
6 | 1, 5 | bltr 138 |
. . . . . . 7
1 ≤ ((b ∪ c⊥ ) ∪ a⊥ ) |
7 | 6 | lelan 167 |
. . . . . 6
(b⊥ ∩ 1) ≤
(b⊥ ∩ ((b ∪ c⊥ ) ∪ a⊥ )) |
8 | | an1 106 |
. . . . . 6
(b⊥ ∩ 1) =
b⊥ |
9 | | comor1 461 |
. . . . . . . 8
(b ∪ c⊥ ) C b |
10 | 9 | comcom2 183 |
. . . . . . 7
(b ∪ c⊥ ) C b⊥ |
11 | 4 | lecom 180 |
. . . . . . . . 9
a C (b ∪ c⊥ ) |
12 | 11 | comcom3 454 |
. . . . . . . 8
a⊥ C
(b ∪ c⊥ ) |
13 | 12 | comcom 453 |
. . . . . . 7
(b ∪ c⊥ ) C a⊥ |
14 | 10, 13 | fh2 470 |
. . . . . 6
(b⊥ ∩
((b ∪ c⊥ ) ∪ a⊥ )) = ((b⊥ ∩ (b ∪ c⊥ )) ∪ (b⊥ ∩ a⊥ )) |
15 | 7, 8, 14 | le3tr2 141 |
. . . . 5
b⊥ ≤ ((b⊥ ∩ (b ∪ c⊥ )) ∪ (b⊥ ∩ a⊥ )) |
16 | 2 | negant 852 |
. . . . . . . . . . 11
(a⊥ →1
c) = (b⊥ →1 c) |
17 | | df-i1 44 |
. . . . . . . . . . 11
(a⊥ →1
c) = (a⊥ ⊥ ∪
(a⊥ ∩ c)) |
18 | | df-i1 44 |
. . . . . . . . . . 11
(b⊥ →1
c) = (b⊥ ⊥ ∪
(b⊥ ∩ c)) |
19 | 16, 17, 18 | 3tr2 64 |
. . . . . . . . . 10
(a⊥
⊥ ∪ (a⊥ ∩ c)) = (b⊥ ⊥ ∪
(b⊥ ∩ c)) |
20 | | anor2 89 |
. . . . . . . . . . 11
(a⊥ ∩ c) = (a ∪
c⊥
)⊥ |
21 | 20 | lor 70 |
. . . . . . . . . 10
(a⊥
⊥ ∪ (a⊥ ∩ c)) = (a⊥ ⊥ ∪
(a ∪ c⊥ )⊥
) |
22 | | anor2 89 |
. . . . . . . . . . 11
(b⊥ ∩ c) = (b ∪
c⊥
)⊥ |
23 | 22 | lor 70 |
. . . . . . . . . 10
(b⊥
⊥ ∪ (b⊥ ∩ c)) = (b⊥ ⊥ ∪
(b ∪ c⊥ )⊥
) |
24 | 19, 21, 23 | 3tr2 64 |
. . . . . . . . 9
(a⊥
⊥ ∪ (a ∪ c⊥ )⊥ ) =
(b⊥ ⊥
∪ (b ∪ c⊥ )⊥
) |
25 | 24 | ax-r1 35 |
. . . . . . . 8
(b⊥
⊥ ∪ (b ∪ c⊥ )⊥ ) =
(a⊥ ⊥
∪ (a ∪ c⊥ )⊥
) |
26 | 25 | ax-r4 37 |
. . . . . . 7
(b⊥
⊥ ∪ (b ∪ c⊥ )⊥
)⊥ = (a⊥
⊥ ∪ (a ∪ c⊥ )⊥
)⊥ |
27 | | df-a 40 |
. . . . . . 7
(b⊥ ∩ (b ∪ c⊥ )) = (b⊥ ⊥ ∪
(b ∪ c⊥ )⊥
)⊥ |
28 | | df-a 40 |
. . . . . . 7
(a⊥ ∩ (a ∪ c⊥ )) = (a⊥ ⊥ ∪
(a ∪ c⊥ )⊥
)⊥ |
29 | 26, 27, 28 | 3tr1 63 |
. . . . . 6
(b⊥ ∩ (b ∪ c⊥ )) = (a⊥ ∩ (a ∪ c⊥ )) |
30 | 29 | ax-r5 38 |
. . . . 5
((b⊥ ∩
(b ∪ c⊥ )) ∪ (b⊥ ∩ a⊥ )) = ((a⊥ ∩ (a ∪ c⊥ )) ∪ (b⊥ ∩ a⊥ )) |
31 | 15, 30 | lbtr 139 |
. . . 4
b⊥ ≤ ((a⊥ ∩ (a ∪ c⊥ )) ∪ (b⊥ ∩ a⊥ )) |
32 | | lear 161 |
. . . . 5
(b⊥ ∩ a⊥ ) ≤ a⊥ |
33 | 32 | lelor 166 |
. . . 4
((a⊥ ∩
(a ∪ c⊥ )) ∪ (b⊥ ∩ a⊥ )) ≤ ((a⊥ ∩ (a ∪ c⊥ )) ∪ a⊥ ) |
34 | 31, 33 | letr 137 |
. . 3
b⊥ ≤ ((a⊥ ∩ (a ∪ c⊥ )) ∪ a⊥ ) |
35 | | lea 160 |
. . . 4
(a⊥ ∩ (a ∪ c⊥ )) ≤ a⊥ |
36 | 35 | df-le2 131 |
. . 3
((a⊥ ∩
(a ∪ c⊥ )) ∪ a⊥ ) = a⊥ |
37 | 34, 36 | lbtr 139 |
. 2
b⊥ ≤ a⊥ |
38 | 37 | lecon1 155 |
1
a ≤ b |