Proof of Theorem gomaex3
Step | Hyp | Ref
| Expression |
1 | | df-i1 44 |
. . . 4
((((a ∪ b) →1 (d ∪ e)⊥ ) →1 ((e ∪ f)
→1 (b ∪ c)⊥ )⊥
)⊥ →1 (c
∪ d)) = ((((a ∪ b)
→1 (d ∪ e)⊥ ) →1 ((e ∪ f)
→1 (b ∪ c)⊥ )⊥
)⊥ ⊥ ∪ ((((a ∪ b)
→1 (d ∪ e)⊥ ) →1 ((e ∪ f)
→1 (b ∪ c)⊥ )⊥
)⊥ ∩ (c ∪ d))) |
2 | | ax-a2 31 |
. . . . . 6
(r ∪ (p⊥ →1 q)) = ((p⊥ →1 q) ∪ r) |
3 | | gomaex3.9 |
. . . . . . . . . 10
p = ((a ∪ b)
→1 (d ∪ e)⊥
)⊥ |
4 | 3 | con2 67 |
. . . . . . . . 9
p⊥ = ((a ∪ b)
→1 (d ∪ e)⊥ ) |
5 | | gomaex3.10 |
. . . . . . . . 9
q = ((e ∪ f)
→1 (b ∪ c)⊥
)⊥ |
6 | 4, 5 | ud1lem0ab 257 |
. . . . . . . 8
(p⊥ →1
q) = (((a ∪ b)
→1 (d ∪ e)⊥ ) →1 ((e ∪ f)
→1 (b ∪ c)⊥ )⊥
) |
7 | | ax-a1 30 |
. . . . . . . 8
(((a ∪ b) →1 (d ∪ e)⊥ ) →1 ((e ∪ f)
→1 (b ∪ c)⊥ )⊥ ) =
(((a ∪ b) →1 (d ∪ e)⊥ ) →1 ((e ∪ f)
→1 (b ∪ c)⊥ )⊥
)⊥ ⊥ |
8 | 6, 7 | ax-r2 36 |
. . . . . . 7
(p⊥ →1
q) = (((a ∪ b)
→1 (d ∪ e)⊥ ) →1 ((e ∪ f)
→1 (b ∪ c)⊥ )⊥
)⊥ ⊥ |
9 | | gomaex3.11 |
. . . . . . . 8
r = ((p⊥ →1 q)⊥ ∩ (c ∪ d)) |
10 | 6 | ax-r4 37 |
. . . . . . . . 9
(p⊥ →1
q)⊥ = (((a ∪ b)
→1 (d ∪ e)⊥ ) →1 ((e ∪ f)
→1 (b ∪ c)⊥ )⊥
)⊥ |
11 | 10 | ran 78 |
. . . . . . . 8
((p⊥ →1
q)⊥ ∩ (c ∪ d)) =
((((a ∪ b) →1 (d ∪ e)⊥ ) →1 ((e ∪ f)
→1 (b ∪ c)⊥ )⊥
)⊥ ∩ (c ∪ d)) |
12 | 9, 11 | ax-r2 36 |
. . . . . . 7
r = ((((a ∪ b)
→1 (d ∪ e)⊥ ) →1 ((e ∪ f)
→1 (b ∪ c)⊥ )⊥
)⊥ ∩ (c ∪ d)) |
13 | 8, 12 | 2or 72 |
. . . . . 6
((p⊥ →1
q) ∪ r) = ((((a ∪
b) →1 (d ∪ e)⊥ ) →1 ((e ∪ f)
→1 (b ∪ c)⊥ )⊥
)⊥ ⊥ ∪ ((((a ∪ b)
→1 (d ∪ e)⊥ ) →1 ((e ∪ f)
→1 (b ∪ c)⊥ )⊥
)⊥ ∩ (c ∪ d))) |
14 | 2, 13 | ax-r2 36 |
. . . . 5
(r ∪ (p⊥ →1 q)) = ((((a
∪ b) →1 (d ∪ e)⊥ ) →1 ((e ∪ f)
→1 (b ∪ c)⊥ )⊥
)⊥ ⊥ ∪ ((((a ∪ b)
→1 (d ∪ e)⊥ ) →1 ((e ∪ f)
→1 (b ∪ c)⊥ )⊥
)⊥ ∩ (c ∪ d))) |
15 | 14 | ax-r1 35 |
. . . 4
((((a ∪ b) →1 (d ∪ e)⊥ ) →1 ((e ∪ f)
→1 (b ∪ c)⊥ )⊥
)⊥ ⊥ ∪ ((((a ∪ b)
→1 (d ∪ e)⊥ ) →1 ((e ∪ f)
→1 (b ∪ c)⊥ )⊥
)⊥ ∩ (c ∪ d))) = (r ∪
(p⊥ →1
q)) |
16 | 1, 15 | ax-r2 36 |
. . 3
((((a ∪ b) →1 (d ∪ e)⊥ ) →1 ((e ∪ f)
→1 (b ∪ c)⊥ )⊥
)⊥ →1 (c
∪ d)) = (r ∪ (p⊥ →1 q)) |
17 | 16 | lan 77 |
. 2
(((a ∪ b) ∩ (d
∪ e)⊥ ) ∩
((((a ∪ b) →1 (d ∪ e)⊥ ) →1 ((e ∪ f)
→1 (b ∪ c)⊥ )⊥
)⊥ →1 (c
∪ d))) = (((a ∪ b) ∩
(d ∪ e)⊥ ) ∩ (r ∪ (p⊥ →1 q))) |
18 | | gomaex3.1 |
. . 3
a ≤ b⊥ |
19 | | gomaex3.2 |
. . 3
b ≤ c⊥ |
20 | | gomaex3.3 |
. . 3
c ≤ d⊥ |
21 | | gomaex3.5 |
. . 3
e ≤ f⊥ |
22 | | gomaex3.6 |
. . 3
f ≤ a⊥ |
23 | | gomaex3.8 |
. . 3
(((i →2 g) ∩ (g
→2 y)) ∩ (((y →2 w) ∩ (w
→2 n)) ∩ ((n →2 k) ∩ (k
→2 i)))) ≤ (g →2 i) |
24 | | gomaex3.12 |
. . 3
g = a |
25 | | id 59 |
. . 3
b = b |
26 | | gomaex3.14 |
. . 3
i = c |
27 | | id 59 |
. . 3
(c ∪ d)⊥ = (c ∪ d)⊥ |
28 | | gomaex3.16 |
. . 3
k = r |
29 | | id 59 |
. . 3
(p⊥ →1
q) = (p⊥ →1 q) |
30 | | gomaex3.18 |
. . 3
n = (p⊥ →1 q)⊥ |
31 | | id 59 |
. . 3
(p⊥ ∩ q) = (p⊥ ∩ q) |
32 | | gomaex3.20 |
. . 3
w = q⊥ |
33 | | id 59 |
. . 3
q = q |
34 | | gomaex3.22 |
. . 3
y = (e ∪ f)⊥ |
35 | | id 59 |
. . 3
f = f |
36 | 18, 19, 20, 21, 22, 23, 3, 5, 9,
24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 | gomaex3lem10 923 |
. 2
(((a ∪ b) ∩ (d
∪ e)⊥ ) ∩
(r ∪ (p⊥ →1 q))) ≤ ((b
∪ c) ∪ (e ∪ f)⊥ ) |
37 | 17, 36 | bltr 138 |
1
(((a ∪ b) ∩ (d
∪ e)⊥ ) ∩
((((a ∪ b) →1 (d ∪ e)⊥ ) →1 ((e ∪ f)
→1 (b ∪ c)⊥ )⊥
)⊥ →1 (c
∪ d))) ≤ ((b ∪ c) ∪
(e ∪ f)⊥ ) |