QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  gomaex3lem10 GIF version

Theorem gomaex3lem10 923
Description: Lemma for Godowski 6-var -> Mayet Example 3. (Contributed by NM, 29-Nov-1999.)
Hypotheses
Ref Expression
gomaex3lem5.1 ab
gomaex3lem5.2 bc
gomaex3lem5.3 cd
gomaex3lem5.5 ef
gomaex3lem5.6 fa
gomaex3lem5.8 (((i2 g) ∩ (g2 y)) ∩ (((y2 w) ∩ (w2 n)) ∩ ((n2 k) ∩ (k2 i)))) ≤ (g2 i)
gomaex3lem5.9 p = ((ab) →1 (de) )
gomaex3lem5.10 q = ((ef) →1 (bc) )
gomaex3lem5.11 r = ((p1 q) ∩ (cd))
gomaex3lem5.12 g = a
gomaex3lem5.13 h = b
gomaex3lem5.14 i = c
gomaex3lem5.15 j = (cd)
gomaex3lem5.16 k = r
gomaex3lem5.17 m = (p1 q)
gomaex3lem5.18 n = (p1 q)
gomaex3lem5.19 u = (pq)
gomaex3lem5.20 w = q
gomaex3lem5.21 x = q
gomaex3lem5.22 y = (ef)
gomaex3lem5.23 z = f
Assertion
Ref Expression
gomaex3lem10 (((ab) ∩ (de) ) ∩ (r ∪ (p1 q))) ≤ ((bc) ∪ (ef) )

Proof of Theorem gomaex3lem10
StepHypRef Expression
1 gomaex3lem5.1 . . 3 ab
2 gomaex3lem5.2 . . 3 bc
3 gomaex3lem5.3 . . 3 cd
4 gomaex3lem5.5 . . 3 ef
5 gomaex3lem5.6 . . 3 fa
6 gomaex3lem5.8 . . 3 (((i2 g) ∩ (g2 y)) ∩ (((y2 w) ∩ (w2 n)) ∩ ((n2 k) ∩ (k2 i)))) ≤ (g2 i)
7 gomaex3lem5.9 . . 3 p = ((ab) →1 (de) )
8 gomaex3lem5.10 . . 3 q = ((ef) →1 (bc) )
9 gomaex3lem5.11 . . 3 r = ((p1 q) ∩ (cd))
10 gomaex3lem5.12 . . 3 g = a
11 gomaex3lem5.13 . . 3 h = b
12 gomaex3lem5.14 . . 3 i = c
13 gomaex3lem5.15 . . 3 j = (cd)
14 gomaex3lem5.16 . . 3 k = r
15 gomaex3lem5.17 . . 3 m = (p1 q)
16 gomaex3lem5.18 . . 3 n = (p1 q)
17 gomaex3lem5.19 . . 3 u = (pq)
18 gomaex3lem5.20 . . 3 w = q
19 gomaex3lem5.21 . . 3 x = q
20 gomaex3lem5.22 . . 3 y = (ef)
21 gomaex3lem5.23 . . 3 z = f
221, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21gomaex3lem9 922 . 2 (((ab) ∩ (de) ) ∩ (r ∪ (p1 q))) ≤ (bc)
23 leo 158 . 2 (bc) ≤ ((bc) ∪ (ef) )
2422, 23letr 137 1 (((ab) ∩ (de) ) ∩ (r ∪ (p1 q))) ≤ ((bc) ∪ (ef) )
Colors of variables: term
Syntax hints:   = wb 1  wle 2   wn 4  wo 6  wa 7  1 wi1 12  2 wi2 13
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a4 33  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38  ax-r3 439
This theorem depends on definitions:  df-b 39  df-a 40  df-t 41  df-f 42  df-i1 44  df-i2 45  df-le1 130  df-le2 131  df-c1 132  df-c2 133
This theorem is referenced by:  gomaex3  924
  Copyright terms: Public domain W3C validator