Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > gomaex3lem10 | GIF version |
Description: Lemma for Godowski 6-var -> Mayet Example 3. (Contributed by NM, 29-Nov-1999.) |
Ref | Expression |
---|---|
gomaex3lem5.1 | a ≤ b⊥ |
gomaex3lem5.2 | b ≤ c⊥ |
gomaex3lem5.3 | c ≤ d⊥ |
gomaex3lem5.5 | e ≤ f⊥ |
gomaex3lem5.6 | f ≤ a⊥ |
gomaex3lem5.8 | (((i →2 g) ∩ (g →2 y)) ∩ (((y →2 w) ∩ (w →2 n)) ∩ ((n →2 k) ∩ (k →2 i)))) ≤ (g →2 i) |
gomaex3lem5.9 | p = ((a ∪ b) →1 (d ∪ e)⊥ )⊥ |
gomaex3lem5.10 | q = ((e ∪ f) →1 (b ∪ c)⊥ )⊥ |
gomaex3lem5.11 | r = ((p⊥ →1 q)⊥ ∩ (c ∪ d)) |
gomaex3lem5.12 | g = a |
gomaex3lem5.13 | h = b |
gomaex3lem5.14 | i = c |
gomaex3lem5.15 | j = (c ∪ d)⊥ |
gomaex3lem5.16 | k = r |
gomaex3lem5.17 | m = (p⊥ →1 q) |
gomaex3lem5.18 | n = (p⊥ →1 q)⊥ |
gomaex3lem5.19 | u = (p⊥ ∩ q) |
gomaex3lem5.20 | w = q⊥ |
gomaex3lem5.21 | x = q |
gomaex3lem5.22 | y = (e ∪ f)⊥ |
gomaex3lem5.23 | z = f |
Ref | Expression |
---|---|
gomaex3lem10 | (((a ∪ b) ∩ (d ∪ e)⊥ ) ∩ (r ∪ (p⊥ →1 q))) ≤ ((b ∪ c) ∪ (e ∪ f)⊥ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gomaex3lem5.1 | . . 3 a ≤ b⊥ | |
2 | gomaex3lem5.2 | . . 3 b ≤ c⊥ | |
3 | gomaex3lem5.3 | . . 3 c ≤ d⊥ | |
4 | gomaex3lem5.5 | . . 3 e ≤ f⊥ | |
5 | gomaex3lem5.6 | . . 3 f ≤ a⊥ | |
6 | gomaex3lem5.8 | . . 3 (((i →2 g) ∩ (g →2 y)) ∩ (((y →2 w) ∩ (w →2 n)) ∩ ((n →2 k) ∩ (k →2 i)))) ≤ (g →2 i) | |
7 | gomaex3lem5.9 | . . 3 p = ((a ∪ b) →1 (d ∪ e)⊥ )⊥ | |
8 | gomaex3lem5.10 | . . 3 q = ((e ∪ f) →1 (b ∪ c)⊥ )⊥ | |
9 | gomaex3lem5.11 | . . 3 r = ((p⊥ →1 q)⊥ ∩ (c ∪ d)) | |
10 | gomaex3lem5.12 | . . 3 g = a | |
11 | gomaex3lem5.13 | . . 3 h = b | |
12 | gomaex3lem5.14 | . . 3 i = c | |
13 | gomaex3lem5.15 | . . 3 j = (c ∪ d)⊥ | |
14 | gomaex3lem5.16 | . . 3 k = r | |
15 | gomaex3lem5.17 | . . 3 m = (p⊥ →1 q) | |
16 | gomaex3lem5.18 | . . 3 n = (p⊥ →1 q)⊥ | |
17 | gomaex3lem5.19 | . . 3 u = (p⊥ ∩ q) | |
18 | gomaex3lem5.20 | . . 3 w = q⊥ | |
19 | gomaex3lem5.21 | . . 3 x = q | |
20 | gomaex3lem5.22 | . . 3 y = (e ∪ f)⊥ | |
21 | gomaex3lem5.23 | . . 3 z = f | |
22 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 | gomaex3lem9 922 | . 2 (((a ∪ b) ∩ (d ∪ e)⊥ ) ∩ (r ∪ (p⊥ →1 q))) ≤ (b ∪ c) |
23 | leo 158 | . 2 (b ∪ c) ≤ ((b ∪ c) ∪ (e ∪ f)⊥ ) | |
24 | 22, 23 | letr 137 | 1 (((a ∪ b) ∩ (d ∪ e)⊥ ) ∩ (r ∪ (p⊥ →1 q))) ≤ ((b ∪ c) ∪ (e ∪ f)⊥ ) |
Colors of variables: term |
Syntax hints: = wb 1 ≤ wle 2 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →1 wi1 12 →2 wi2 13 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-i2 45 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
This theorem is referenced by: gomaex3 924 |
Copyright terms: Public domain | W3C validator |