| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > ud1lem0ab | GIF version | ||
| Description: Join both sides of hypotheses with →1 . (Contributed by NM, 19-Dec-1998.) |
| Ref | Expression |
|---|---|
| ud1lem0ab.1 | a = b |
| ud1lem0ab.2 | c = d |
| Ref | Expression |
|---|---|
| ud1lem0ab | (a →1 c) = (b →1 d) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ud1lem0ab.1 | . . 3 a = b | |
| 2 | 1 | ud1lem0b 256 | . 2 (a →1 c) = (b →1 c) |
| 3 | ud1lem0ab.2 | . . 3 c = d | |
| 4 | 3 | ud1lem0a 255 | . 2 (b →1 c) = (b →1 d) |
| 5 | 2, 4 | ax-r2 36 | 1 (a →1 c) = (b →1 d) |
| Colors of variables: term |
| Syntax hints: = wb 1 →1 wi1 12 |
| This theorem was proved from axioms: ax-a2 31 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
| This theorem depends on definitions: df-a 40 df-i1 44 |
| This theorem is referenced by: 1oai1 821 gomaex3 924 oa3to4lem6 950 oa4to6 965 |
| Copyright terms: Public domain | W3C validator |