Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > or12 | GIF version |
Description: Swap disjuncts. (Contributed by NM, 27-Aug-1997.) |
Ref | Expression |
---|---|
or12 | (a ∪ (b ∪ c)) = (b ∪ (a ∪ c)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-a2 31 | . . 3 (a ∪ b) = (b ∪ a) | |
2 | 1 | ax-r5 38 | . 2 ((a ∪ b) ∪ c) = ((b ∪ a) ∪ c) |
3 | ax-a3 32 | . 2 ((a ∪ b) ∪ c) = (a ∪ (b ∪ c)) | |
4 | ax-a3 32 | . 2 ((b ∪ a) ∪ c) = (b ∪ (a ∪ c)) | |
5 | 2, 3, 4 | 3tr2 64 | 1 (a ∪ (b ∪ c)) = (b ∪ (a ∪ c)) |
Colors of variables: term |
Syntax hints: = wb 1 ∪ wo 6 |
This theorem was proved from axioms: ax-a2 31 ax-a3 32 ax-r1 35 ax-r2 36 ax-r5 38 |
This theorem is referenced by: or4 84 sklem 230 nom21 314 nom22 315 ska2 432 woml6 436 oml5 449 i0cmtrcom 495 df2i3 498 i3con 551 ud1lem1 560 ud3lem1c 568 ud3lem1 570 ud3lem3 576 ud5lem3 594 u3lemob 632 u4lemob 633 u4lem6 768 u3lem7 774 u1lem11 780 test 802 3vth5 808 3vth7 810 3vth9 812 3vded22 818 2oalem1 825 3vroa 831 orbi 842 mhlem 876 mh 879 oa3-2lemb 979 oa3-5lem 984 mloa 1018 wdwom 1106 ml3le 1129 l42modlem1 1149 dp15lemd 1157 dp15lemf 1159 xdp15 1199 xxdp15 1202 xdp45lem 1204 xdp43lem 1205 xdp45 1206 xdp43 1207 3dp43 1208 |
Copyright terms: Public domain | W3C validator |